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Executive Summary 

SQUID NDE AND POD USING A 
BEM MEASUREMENT MODEL 

by Anthony P. Ewing 

Overview 
As the commercial and military aircraft fleets age, additional resources are required 

to ensure their airworthiness. As the aircraft become older, the more likely they are to 
develop structural damage that may lead to unscheduled repairs or, in the worst case, 
accidents. Fatigue and corrosion are the two main causes of structural damage in aging 
aircraft and this research examines the use of a Superconducting QUantum Interference 
Device (SQUID) magnetometer as a tool for Nondestructive Evaluation (NDE) to detect 
and characterize these aging aircraft problems. The primary advantage of using SQUIDs 
in NDE over other techniques is the ability to detect second layer cracks and corrosion 
commonly found in aircraft structures. 

In general, verification of a NDE method means demonstrating, through 
experiment and/or calculations, the ability to distinguish signal from noise for the flaw 
types and sizes and instrument/flaw configurations expected in the actual inspection. A 
common approach to quantify and validate the capabilities of an inspection technique is 
to conduct a probability of detection (POD) analysis. There are basically two ways to 
conduct this type of analysis. The first is, experimentally, which requires a large number 
of samples with ranging flaw characteristics being examined by several inspectors. The 
second is, analytically, which requires a model simulating the inspection process for a 
range of samples and testing conditions. 

A POD analysis has been done using the analytical approach, combined with 
experimental information, to evaluate SQUID NDE reliability consistent with damage 
tolerant design philosophies used in aerospace to make life predictions. A minimum 
detectable crack length at 90% probability of detection and 95% confidence was used as 
the reliability criteria. 

Fatigue Cracks - a Problem Requiring NDE 
Fatigue cracking in aircraft is primarily due to cyclic stress loading. For example, 

internal pressurization during flight creates stresses on the fuselage longitudinal skin 
splices. The two basic splice designs used are shown in Figure 1. 

Figure 1 Fuselage skin splices: a) lap splice and b) butt splice 



Fatigue cracks are most likely to develop along the direction of the fastener row since the 
primary stress direction is transverse to the row (see Figure 2). Usually, the cracks start at 
the fastener hole and propagate radially and, if there is multiple site damage (MSD), the 
structural strength is greatly reduced even for small crack lengths. 
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Figure 2 Fatigue crack development along direction of fastener row 

Aircraft are designed to meet damage tolerant requirements and nondestructive 
evaluation/inspection (NDE/I) techniques are needed to efficiently and reliably detect and 
characterize damage, if it occurs, so that repairs can be made. Damage tolerant design 
basically involves fatigue crack growth predictions starting from some assumed crack 
length, a0, due to possible manufacturing defects. For aircraft structures, damage 
tolerance specifications require a 90% detection probability and 95% confidence level for 
detecting a specified crack length, alh (threshold crack length), at a particular location. 

The dependence of ath on the inspection process and the uncertainties associated with the 
detection of a crack lead to the statistical problem that can be addressed by POD analyses. 
Earlier NDE work established POD as a way in which NDE process performance could 
be quantified and incorporated into specifications, standards and design documents. By 
quantifying the procedure to measure the performance capability of a NDE system, 
objective comparison could be done for different NDE systems and NDE performance 
requirements could be defined for development of new techniques. 

Probability of Detection (POD) 
Probability of detection can be defined as the probability that a specific crack length 

can be detected with a particular inspection system under known conditions. POD 
combines characteristics of the measurement system, including noise, with statistical 
information pertinent to the cracks being examined. The schematic POD curve in Figure 3 
shows the probability of detection as a function of crack length. The probability of 
detecting a small crack is low whereas, the probability of detecting larger cracks approaches 
unity. 
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Figure 3 Probability of detection as a function of crack length 

The POD function serves as a basis to evaluate the capability of an NDE system. 
For these analyses, POD is a function of crack length to be consistent with life prediction 
calculations that are based on crack length. The POD then is a measure of how well cracks 
of all sizes can be found. This capability cannot be determined exactly but, through the use 
of confidence bounds that account for the random errors of the NDE process, can be 
estimated. For example, the Air Force uses a 95% lower confidence bound that provides a 
risk factor that the true probability of detection is better than this bound 95% of the time. 

Use of SQUID's in NDE 
A superconducting quantum interference device (SQUID) magnetometer is the 

world's most sensitive detector of magnetic fields. The potential advantage that a SQUID 
has over other techniques is its ability to detect second layer flaws by using low 
frequency excitation. 

A SQUID NDE technique is not only defined by the SQUID instrument 
characteristics but also by nature of the current distributions used to probe the flaws. 
When the current passing through the sample is affected by inhomogenieties, voids, 
cracks, and edges, the magnetic field is perturbed and can be sensed by the pickup coil of 
the SQUID. This work focuses on the dc-current injection technique. Injecting or inducing 
a uniform current distribution in the specimen causes the current to be parallel to the 
specimen surface under the pickup coil. For example, a large, uniform plate would have 
a magnetic field from this that encircles the specimen. This magnetic field would 
primarily be parallel to the specimen surface for scans centrally located and for small 
liftoff distances. The pickup coils measure only the perpendicular component (or 
gradient of this) of the magnetic field. A flaw in the specimen will perturb the parallel 
field and produce a perpendicular component which can then be detected (pickup coils 
measure only B2). Figure 4 illustrates the SQUID pickup coil being scanned over the 
sample containing a flaw and the typical magnetic map produced revealing a signature 
that commonly has a dipolar shape. The trough and ridge at the ends of the map are due 
to the edge effects of the plate. 



Figure 4 Dc-current injection: (a) scan over sample (b) resulting Bz magnetic map 

Although this technique is not likely to be used in a field instrument, the current 
distributions produced are similar to the planar ac eddy currents produced by sheet inducers, 
which are proposed for a field instrument. Also, since existing boundary element methods 
can be used to model dc-current injection, the analytical approach to a POD analysis can be 
taken. 

Measurement Model 
A measurement model using boundary element methods has been constructed 

simulating a SQUID magnetometer being scanned over a dc-current injected, finite plate 
containing an ideal (i.e., straight, infinitely thin, and perfectly insulated) crack. The 
model was used to examine the effect of system parameter variability on flaw 
detectability. The results of this sensitivity analysis was then combined with empirical 
noise distributions to determine probability of detection. A goal in this research was to 
develop a method where simulation represents the experimental approach, is cheaper and 
faster, and identifies sources of unreliability in SQUID NDE. 

The objective of the SQUID measurement model, which solves the forward 
problem of calculating the magnetic field from a known current distribution, is to 
simulate what the instrument may see in a test environment on an unknown sample. A 
SQUID gradiometer measures the vertical component of magnetic field, which is the 
result of currents flowing in the sample. A flaw will perturb these currents and, if the 
perturbation is large enough (e.g., signal/noise > 1), show up as an anomaly in the 
magnetic field map. The specific aging aircraft problem being addressed is the modeling 
of a fatigue crack emanating radially from a fastener hole (schematically shown in Fig. 5) 
as discussed previously regarding fuselage skin splices. 

Fastener hole 
"y 

Figure 5 Schematic of a fastener hole with crack 



For the interested reader, the details of the mathematical development of this can 
be found in Chapter II of the associated dissertation from which this summary is written. 

POD Curves from Simulated Experimental Data 
Figure 6 shows the centerline profiles of the magnetic maps resulting from 

simulated scans over a hole with crack for four different crack lengths while keeping the 
hole diameter constant. As can be seen, for increasing crack length, the signal 
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Figure 6 Scan centerline profiles for various crack lengths (with hole) 

amplitude increases. Also, the asymmetry increases, pulling the crack side of the dipolar 
signal to the right while the hole side remains relatively fixed. The important characteristic 
for POD is the increasing peak-to-peak value as a function of crack length, which is the 
"signal" used in the POD analysis. 

Sensitivity analyses were done on the system parameters of scan resolution, plate 
thickness, pick-up coil liftoff, and pick-up coil tilt angle to determine how they affect the 
overall signal distribution.  Monte Carlo simulations used this signal distribution along 
with experimental noise distributions to generate realistic POD curves. 

Noise distributions must be characterized in order to determine POD and POFA. 
Several noise distributions have been extracted from existing experimental data for different 
SQUID systems and measurement techniques. The measurement model simulates dc- 
current injection and experiments using direct dc-current injection have large noise 
distributions since they use the entire bandwidth of the SQUID (dc to -10kHz) and 
therefore, include noise over these frequencies as well. Noise conditions associated with 
other experimental techniques are more representative of what SQUID's will be operated in. 
Techniques based upon eddy current inducers use lock-in amplifiers at a particular 
frequency and greatly reduce the noise. The dc-measurement data shows approximately 
400 pT peak-to-peak noise while the lock-in measurement data shows about 2 pT, a noise 



reduction factor of 200! POD values determined using noise from lock-in measurements 
represent present SQUID capability. 

Monte Carlo simulation, utilizing the results from the BEM measurement model, 
was used to sample from the uncertainty distributions of scan resolution, plate thickness, 
pick-up coil liftoff and pick-up coil tilt angle to generate an overall signal distribution. The 
resulting signal distribution was then compared with the noise distributions associated with 
ac and dc measurements to determine POD. A 95% lower confidence bound was then 
generated by iterative generation of multiple signal distributions at each crack length. 

Figure 7 is the dc-measurement POD curve resulting from generating similar 
distributions at each crack length. The abruptness of the POD curve near the origin is due 
to a combination of the relative sharpness of the signal distribution with respect to the noise 
distribution and the one-sidedness of the noise distribution. The 95% lower confidence 
limit applies more to experimentally based POD curves that are usually generated from a 
relatively small number of data points. For simulated data, the lower confidence bound 
can be made to basically lie on the POD curve if enough runs are made and is not as 
useful as a concept as for the experimentally derived POD curve. 
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The minimum detectable crack lengths corresponding to 90% probability of 
detection at 95% confidence are 1.4 mm for the dc-measurement and 0.0134 mm for the ac- 
measurement. The very small minimum detectable crack length determined for the ac- 
measurement is due to the large noise reduction through use of the lock-in amplifier in this 
type of measurement. 

In the Monte Carlo simulations, the signal distribution was compared directly with 
the noise distribution to determine POD. For direct sampling from distributions, the signal- 
to-noise ratio set the threshold (alh), which set the detection criteria. To examine the 
tradeoff between the probability of detection (POD) and the probability of false alarm 
(POFA) when setting alh, the signal and noise distribution data generated by the Monte 
Carlo simulations can be presented in a different format. The SNR requirements determine 
where alh is to be placed, thus affecting POD (larger SNR requirements correspond to larger 
minimum detectable crack lengths). 

Figure 8 displays the dc-measurement POFA and POD curves for three crack 
lengths, including the minimum detectable crack length, as a function of threshold. By 
setting a threshold, a value for POFA and POD for all crack lengths is determined. As 
can be seen, for a crack length of 0.5 mm, the 90% probability of detection point 
corresponds to a 28% POFA (i.e., there is a 28% chance that noise will be mistaken for a 
signal). There is only a single POFA curve since probability of false alarm is determined 
from the noise distribution, which for these simulations is constant. Figure 9 shows the 
ac-measurement POFA and POD as a function of threshold for the previously determined 
minimum detectable crack length of 0.0134 mm. In both the dc and ac measurement 
cases, the POFA corresponding to the minimum detectable crack length is approximately 
zero. 
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for the minimum detectable crack length 

Factors That May Decrease POD Capability 
The relatively small values of minimum detectable crack length determined from 

this analysis prompts discussion on whether this reflects the true capability of SQUIDs in 
the detection of real cracks near fasteners in aircraft lap joints. Experimental measurements 
using SQUIDs on fatigue cracks in lap joints have demonstrated the difficulty in finding 
cracks, adjacent to fasteners, on the order several millimeters in length. For the POD 
analysis done here, only four system parameters (scan resolution, plate thickness, pickup 
coil liftoff and tilt angle) and their associated uncertainties were considered. Since it is 
these parameter uncertainties that determine the overall signal distribution, and therefore 
POD, it is apparent that significant parameters have been left out of this analysis. More 
than likely, these stem from sample-related noise associated with real measurements, which 
have not been represented in either the measurement model itself or through the parameter 
uncertainty distributions. Sample-related noise results from the geometry of the sample or, 
more specifically, how that geometry affects the current flow used to probe the sample. 
Figure 10 shows how some of these current paths can go under and/or through the crack and 
the fastener, further complicating the detection and characterization of the crack. Some of 
these issues are discussed in the following sections. 



Figure 10 Additional current paths complicating crack detection 

Crack shape - Probability of detection is traditionally stated as a function of crack 
length to be consistent with damage tolerant requirements, which are stated in terms of 
crack length. However, crack shape is an important issue to discuss briefly since cracks of 
the same "length" but different shape could result in different signals. Currently, the BEM 
measurement model simulates a straight-through crack (the same length through the entire 
thickness of the plate) but it is possible to use the model to simulate "3-D" cracks to 
examine the effect of crack "shape" on magnetic field. By creating slices of varying shapes 
and depths (see Fig. 11), a pseudo-3D crack can be modeled. 

Figure 11 Pseudo 3-D modeling of a crack using slices 

Since crack shape affects both the amplitude and the shape of the magnetic field, then this 
pseudo 3-D approach would be a better approximation to a real crack that has shape that 
varies with depth. 

Ideal cracks versus real cracks and slots - The BEM measurement model assumes 
an ideal, perfectly insulating, and infinitely thin crack. This assumption will lead to 
differences between the model and measurements made on samples containing either 
wide cracks (slots) or real fatigue cracks. Most fabricated test samples used in our 
laboratory use slots, made by a saw or electrodischarge machining (EDM), to simulate 
cracks. A combination of a drilled hole with an EDM slot is an approximation to a crack 
emanating from an aircraft fastener hole. This is useful in preliminary analyses, especially 
for development of NDE techniques.   Fabrication of test samples made this way is 
simple and controllable, making it easy to build a test set representing the range of 
conditions that are of interest. But, measurements with NDE instruments have shown 
that the instrument response from a slot is not necessarily the same as that from a fatigue 



crack of the same size and geometry. Figure 12 schematically shows some of the 
possible variations, each possibly resulting in a different instrument response. 
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Figure 12 Slot profiles: (a) wide slot (b) narrow slot (c) ideal crack (d) real crack 

The BEM measurement model simulates a closed crack that is electrically insulated 
along the entire length. We have shown that it provides a reasonable approximation to a 
thin slot for liftoffs appropriate for SQUIDs commonly used in the laboratory (> 3 mm). 
However, for real fatigue cracks, it is possible that crack closure may cause electrical 
conductivity across parts of the crack. Probability of detection will be strongly dependent 
on the effects of crack closure since, if current is flowing through the crack instead of 
around it, the signal (which is proportional to the perturbation of the current) will be greatly 
reduced. It is not yet understood how much crack closure effects current flow since it is 
likely that the oxide layers that form on the crack surfaces will act as an electrical insulator 
and so, only those contact points where the oxide layer is not present will provide 
conductive paths. 

Additional current paths - The POD analysis has been based on simulated 
measurements of a crack emanating from a fastener hole and has completely ignored the 
effects of the fastener itself. This is most likely one of the larger sources of discrepancy 
present between the model and real measurement. Since most fatigue cracks start under the 
fastener head, early detection is difficult and usually the crack has to propagate beyond the 
fastener head before detection occurs. Another critical issue is that of contact between the 
fastener and the hole sides, which can create numerous current flow paths across and 
through the fastener. These currents may be too difficult to model directly and their 
associated uncertainty might have to be represented through a sample-related noise 
distribution. This will probably have to be determined experimentally by examining 
samples with holes alone and with fasteners inserted to quantify the effect on the magnetic 
signal. 

Geometry factors - Current can also be greatly affected by the geometry of the 
surrounding structure, particularly edges such as lap joint seams. Figure 13 shows that 
edges can produce a large signal amplitude that can make flaw detection difficult, especially 
if the flaw is located near an edge. Image processing techniques can partially remove the 
background slope due to these edges but it is still difficult to extract the signal from a flaw 
that is near an edge. Edges and other geometrical factors (e.g., structural support members) 
affect the ability of the SQUID to detect a crack and these have not been taken into account 
in this POD analysis. 

10 



Flaw Signal 
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BEM Model 

Figure 13 Magnetic map centerline profile pointing out edge and flaw signals 

Factors That May Increase POD Capability 
Signal definition - The peak-to-peak value of the magnetic dipolar map is the 

present definition of "signal" used in these analyses. Peak-to-peak amplitude is a very 
limited use of the information available in the mapping since it reduces the entire 2-D image 
to a single value. It is the opinion of the author that image features (e.g., shape and 
asymmetry) of the 2-D magnetic field map are just as important as the peak-to-peak signal 
amplitude in the detection and characterization of cracks, especially near fastener holes. For 
example, if we look at the magnetic map centerline profiles for various ideal geometries that 
have the same "cross sectional length" perpendicular to the current injection direction, we 
can see that using only peak-to-peak information for current perpendicular to the crack can 
lead to detection problems. The left-hand side of Fig. 14 shows the profiles for the current 
transverse to the crack at three different liftoffs for a 9 mm diameter hole, a 5 mm hole with 
a 4 mm crack, and a 9 mm crack. The signal values for each of the traces are plotted on the 
same scale and represent a SQUID system using 3 mm pickup/balance coils with a 3 cm 
baseline. From this information, all the profiles look the same in that they are dipolar with a 
mostly symmetrical shape. Based on peak-to-peak amplitude in a single direction, we can 
not distinguish between a crack alone, hole alone, or a hole-with-crack combination unless a 
baseline signal amplitude can be established as was done earlier in this POD analysis using 
the signal associated with a 5 mm hole alone. However, this approach would not work here 
since the 5 mm hole is not a constant feature in all three geometries. 

The rotating current schemes take advantage of the differing two-dimensional 
structure of these three geometries. By rotating the current direction, the signals associated 
with a crack will go through a maximum (when the current is perpendicular to the crack) 
and a minimum (when the current is parallel to the crack). A hole alone will not show this 
cyclic behavior (unless it is out-of-round). On the right-hand side of Fig. 14 are the 
corresponding profiles when the current is parallel to the crack showing the 9 mm crack 
having a flatline (zero signal) and the 5 mm hole with a 4 mm crack having a signal 
corresponding to a 5 mm hole alone and the 9 mm hole is unchanged. In this way, the three 
geometries could be distinguished by a measure of their peak-to-peak difference at the two 
current injection directions, with the crack alone being the largest, the hole-with-crack 
combination the next largest, and the hole alone having no difference. Real fatigue cracks 
will have some small signal for current injected parallel to the crack (versus zero signal for 
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the ideal cracks of Fig. 14) but will still show the same maximum/minimum behavior as a 
function of current injection direction (the signal difference will just be smaller than the 
ideal crack case). 
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Figure 14 Profiles for three 9-ram "cross section" geometries at varying liftoffs 
(Note: all profile traces are on the same scale) 

SQUID NDE systems will have to use asymmetry measures (which includes the 
rotating current direction technique) for crack detection, especially for cracks originating 
from fastener holes. If the asymmetry technique is used only to find the maximum and 
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minimum of the signal, then POD may still be determined primarily from peak-to-peak 
amplitudes. However, if additional measures of asymmetry (e.g., eccentricity or other 
shape factors) are to be used, then POD analyses must incorporate these measures into the 
standard peak-to-peak analysis to reflect the true capability of the system. This is an 
important topic to be addressed for future development of SQUID POD methodologies. 

Conclusions 
A measurement model using boundary element methods has been constructed 

simulating a SQUID magnetometer being scanned over a dc-current injected, finite plate 
containing an ideal (i.e., straight, infinitely thin, and perfectly insulated) crack. The 
model was used to examine the effect of system parameter (scan resolution, plate 
thickness, pick-up coil liftoff, and pick-up coil tilt angle) variability on flaw detection. 
The results of this sensitivity analysis were then combined with empirical noise 
distributions to determine probability of detection. A goal in this research was to develop 
a method where simulation represents the experimental approach, is cheaper and faster, 
and identifies sources of unreliability in SQUID NDE. 

This POD analysis resulted in minimum detectable crack lengths corresponding to 
90% probability of detection at 95% confidence of 1.4 mm for the dc-measurement and 
0.0134 mm for the ac-measurement. The very small minimum detectable crack length 
determined for the ac-measurement is due to the large noise reduction through use of the 
lock-in amplifier in this type of measurement.. However, there is a large discrepancy 
between experimental measurements on real fatigue cracks and the results of this analysis. 
If the model is to be used to calculate realistic probability of detection values for SQUID 
systems, more work has to be done to quantify additional sources of noise to be 
incorporated into the analysis. Some of the possible sources of this noise have been 
discussed but no work has been done as of yet to quantify their effects. 

The BEM measurement model has already been used in other experimental work 
involving validation and calibration techniques. The model is just now beginning to be 
used for POD work, which was what it was originally designed for, and continued 
development will improve the model as a tool for SQUID NDE development and 
capability measurement. 
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A BEM MEASUREMENT MODEL 
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Dissertation under the direction of Professors T.A. Cruse and J.P. Wikswo, Jr. 

Superconducting QUantum Interference Device's (SQUID's) are being used as tools 

for Nondestructive Evaluation (NDE) to detect and characterize defects in aging aircraft. To 

evaluate SQUID NDE reliability, a probability of detection (POD) analysis has been done. 

A boundary element method (BEM) measurement model using a Green's function 

developed specifically for crack problems has been constructed for use in the POD analysis. 

The model simulates the 2-D images of the magnetic field obtained by scanning a SQUID 

magnetometer over a plate containing a crack and carrying an injected dc-current. POD 

curves were generated through Monte Carlo simulation using distributions derived from 

sensitivity analyses and experimental noise measurements. For the conditions simulated, 

crack lengths of 1.4 mm (dc-measurement) and 0.0134 mm (ac-measurement) could be 

found with 90% probability of detection and 95% confidence. These small crack lengths 

suggest that additional experimental noise factors will have be incorporated into the POD 

analysis before realistic S0UID NDE capability can be accurately quantified. 
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CHAPTER I 

INTRODUCTION 

Overview 

As the commercial and military aircraft fleets age, additional resources are required 

to ensure their airworthiness. As the aircraft become older, the more likely they are to 

develop structural damage that may lead to unscheduled repairs or, in the worst case, 

accidents. Fatigue and corrosion are the two main causes of structural damage in aging 

aircraft and this research examines the use of a Superconducting QUantum Interference 

Device (SQUID) magnetometer as a tool for Nondestructive Evaluation (NDE) to detect 

and characterize these aging aircraft problems. The primary advantage of using SQUIDs 

in NDE over other techniques is the ability to detect second layer cracks and corrosion 

commonly found in aircraft structures. 

In general, verification of a NDE method means demonstrating, through 

experiment and/or calculations, the ability to distinguish signal from noise for the flaw 

types and sizes and instrument/flaw configurations expected in the actual inspection. A 

common approach to quantify and validate the capabilities of an inspection technique is 

to conduct a probability of detection (POD) analysis. There are basically two ways to 

conduct this type of analysis. The first is, experimentally, which requires a large number 

of samples with ranging flaw characteristics being examined by several inspectors. The 

second is, analytically, which requires a model simulating the inspection process for a 

range of samples and testing conditions. 
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A POD analysis is being done using the analytical approach, combined with 

experimental information, to evaluate SQUID NDE reliability consistent with damage 

tolerant design philosophies used in aerospace to make life predictions. A minimum 

detectable crack length at 90% probability of detection and 95% confidence is being used 

as the reliability criteria. 

Fatigue Cracks - a Problem Requiring NDE 

Fatigue cracking in aircraft is primarily due to cyclic stress loading. For example, 

internal pressurization during flight creates stresses on the fuselage longitudinal skin 

splices. The two basic splice designs used [1] are shown in Figure 1.1. 

Figure 1.1 Fuselage skin splices: a) lap splice and b) butt splice 

Fatigue cracks are most likely to develop along the direction of the fastener row since the 

primary stress direction is transverse to the row (see Figure 1.2). Usually, the cracks start at 

the fastener hole and propagate radially and, if there is multiple site damage (MSD), the 

structural strength is greatly reduced even for small crack lengths. 
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Figure 1.2 Fatigue crack development along direction of fastener row 

Aircraft are designed to meet damage tolerant requirements [2-5] and nondestructive 

evaluation/inspection (NDE/I) techniques are needed to efficiently and reliably detect and 

characterize damage, if it occurs, so that repairs can be made. Damage tolerant design 

basically involves fatigue crack growth predictions starting from some assumed crack 

length, a0, due to possible manufacturing defects. For aircraft structures, damage 

tolerance specifications require a 90% detection probability and 95% confidence level for 

detecting a specified crack length, ath, at a particular location. The inspection interval, t, 

is determined by 

t-^ (1.1) 

where N is the fracture mechanics propagation life or the life for a crack length a to 

propagate to the permissible crack length, ap, under expected usage environments and S/ 

is the safety factor. The permissible crack length a}, which is smaller than the failure 

crack length, is associated with minimum residual strength under the presence of cracks, 

defined by Federal Aviation Regulations Airworthiness Requirements (FAR-25)[6]. 

Commonly, a safety factor of two is used and so inspections are then required at half the 



predicted time for the crack to reach the permissible crack length. After the first 

inspection, the crack length is reset to the largest crack length that can be missed by the 

inspection process being used, alh (see Figure 1.3). 

Crack 
Length 

Figure 1.3 Crack growth and inspection 

This process is repeated throughout the aircraft's life with detected cracks being repaired. 

The dependence of alh on the inspection process and the uncertainties associated with the 

detection of a crack lead to the statistical problem that can be addressed by POD analyses. 

Earlier NDE work [7,8] established POD as a way in which NDE process performance 

could be quantified and incorporated into specifications, standards and design documents 

[3-5]. By quantifying the procedure to measure the performance capability of a NDE 

system, objective comparison could be done for different NDE systems and NDE 

performance requirements could be defined for development of new techniques. 



Probability of Detection (POD) 

Probability of detection can be defined as the probability that a specific crack length 

can be detected with a particular inspection system under known conditions. POD 

combines characteristics of the measurement system, including noise, with statistical 

information pertinent to the cracks being examined. The schematic POD curve in Figure 

1.4 shows the probability of detection as a function of crack length. The probability of 

detecting a small crack is low whereas, the probability of detecting larger cracks approaches 

unity. 

Probability 
of Detection °-5 

Crack Length 

Figure 1.4 Probability of detection as a function of crack length 

The POD function serves as a basis to evaluate the capability of an NDE system. 

For these analyses, POD is a function of crack length to be consistent with life prediction 

calculations that are based on crack length. The POD then is a measure of how well cracks 

of all sizes can be found. This capability cannot be determined exactly but, through the use 

of confidence bounds that account for the random errors of the NDE process, can be 

estimated. For example, the Air Force uses a 95% lower confidence bound that provides a 

risk factor that the true probability of detection is better than this bound 95% of the time. 



Use of SQUID's in NDE 

A superconducting quantum interference device (SQUID) magnetometer is the 

world's most sensitive detector of magnetic fields. The potential advantage that a SQUID 

has over other techniques is its ability to detect second layer flaws by using low 

frequency excitation. Figure 1.5 shows one of the imaging SQUID gradiometer systems 

at Vanderbilt University (termed u-SQUID [9]) which contains four 3-mm diameter, 16 

turn, closely-spaced pick-up coils for high resolution measurements. Minimum liftoff 

(pick-up coil to sample) distance is 2-3 mm. To reject noise, all pick-up coils are axial 

gradiometers, each having a counter-wound 12-mm, 1 turn, balance coil with a baseline of 

3 cm. Two separate scanning stages are currently being used to move samples beneath 

SQUID instruments to produce the 2-D magnetic field maps. One, a non-magnetic high- 

speed (up to 10 cm/s) belt driven stage, is used inside the magnetic shield. The other, an 

open frame screw-drive stage, cannot be used inside the shield and must use a diving 

board assembly to hold the sample under the SQUID for scanning. 

SQUID. 
Electronics 

Vacuum     _ 
Space     ^ 

Liquid 
Helium 
Reservoir 

\_Pick-Up Coils 

Figure 1.5 The u-SQUID system 



A SQUID NDE technique is not only defined by the SQUID instrument 

characteristics but also by nature of the current distributions used to probe the flaws. 

When the current passing through the sample is affected by inhomogenieties, voids, 

cracks, and edges, the magnetic field is perturbed and can be sensed by the pickup coil of 

the SQUID. Some of the commonly used techniques in SQUID NDE include the 

following: 

a) Ac/dc Current Injection: Injecting or inducing a uniform current distribution 

in the specimen causes the current to be parallel to the specimen surface under 

the pickup coil. For example, a large, uniform plate would have a magnetic 

field from this that encircles the specimen. This magnetic field would 

primarily be parallel to the specimen surface for scans centrally located and 

for small liftoff distances. The pickup coils measure only the perpendicular 

component (or gradient of this) of the magnetic field. A flaw in the specimen 

will perturb the parallel field and produce a perpendicular component which 

can then be detected (pickup coils measure only BJ. Figure 1.6 illustrates the 

SQUID pickup coil being scanned over the sample containing a flaw and the 

typical magnetic map produced revealing a signature that commonly has a 

dipolar shape. The trough and ridge at the ends of the map are due to the edge 

effects of the plate. 

b) Inducing Plate: An eddy-current technique using a striped inducer sheet 

constructed from a 300 urn copper sheet carrying a low frequency ac-current 



Figure 1.6 Dc-current injection: (a) scan over sample (b) resulting Bz magnetic map 

has been used to image flaws in test specimens. This also leads into the present 

work related to the use of phase information of the eddy current image to 

determine depth of the flaw [10]. 

c) Ac Nulling: This is basically a modified eddy-current technique. An ac 

magnet located in the tail of the instrument is capable of producing a low- 

frequency ac-signal (200 Hz max). Optimizing software controls feedback 

circuitry to cancel the ac-signal that is directly coupled to the SQUID as different 

specimens are examined. This feedback allows a "zeroing" out of the signal 

before a scan and enables the instrument to be set on a higher sensitivity. 

General Approach 

This work focuses on the dc-current injection technique. Although this technique is 

not likely to be used in a field instrument, the current distributions produced are similar to 

the planar ac eddy currents produced by sheet inducers, which are proposed for a field 

instrument. Also, since existing boundary element methods can be used to model dc- 

current injection, the analytical approach to a POD analysis can be taken. 
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A measurement model using boundary element methods will be constructed 

simulating a SQUID magnetometer being scanned over a dc-current injected, finite plate 

containing an ideal (i.e., straight, infinitely thin, and perfectly insulated) crack. The 

model will be used to examine the effect of system parameter variability on flaw 

detectability. The results of this sensitivity analysis will then be combined with empirical 

noise distributions to determine probability of detection. A goal in this research is to 

develop a method where simulation represents the experimental approach, is cheaper and 

faster, and identifies sources of unreliability in SQUID NDE. 



CHAPTER II 

SQUID NDE MEASUREMENT MODEL 

Modeling the Measurement Process 

Due to the large number of parameters defining a method, experimental results 

alone are usually inadequate for examining the effect of parameter variation on POD. 

Therefore, predictive measurement models are needed in reliability analysis to extend the 

database required for a POD analysis. Using mathematical modeling, the response of the 

measurement system to the anomalies of interest (e.g., cracks, corrosion, and voids) can 

be simulated if enough is known about the field-flaw interaction that generates the 

response function. Due to the complexity of the mathematics of these interactions, 

idealized models are normally used but these still provide sensitivity analysis information 

useful in constructing POD models. 

The goal of a measurement model would be to predict, through repeated 

simulations with random perturbations in the system parameters that have known 

distributions, a distribution of flaw signals about some mean value. This distribution 

determines the POD performance for the particular system/technique being verified. 

Flaw Modeling 

The objective of the SQUID measurement model, which solves the forward 

problem of calculating the magnetic field from a known current distribution, is to 

simulate what the instrument may see in a test environment on an unknown sample. A 
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SQUID gradiometer measures the vertical component of magnetic field, which is the 

result of currents flowing in the sample. A flaw will perturb these currents and, if the 

perturbation is large enough (e.g., signal/noise > 1), show up as an anomaly in the 

magnetic field map. Ideally, "inverting" this magnetic field to give the underlying 

current map which generated the field would give much detail about the flaw producing 

the anomaly but, unfortunately, inverse solutions are non-unique (in 3-D) and even 

obtaining approximate reconstructions can be a very difficult job. The specific aging 

aircraft problem being addressed is the modeling of a fatigue crack emanating radially 

from a fastener hole (schematically shown in Fig. 2.1) as discussed in the previous 

chapter regarding fuselage skin splices. The measurement model involves only the 

forward problem and requires that the flaw geometry be known beforehand. 

Fastener hole 
"y 

Figure 2.1 Schematic of a fastener hole with crack 

Superposition Measurement Model 

To model a hole with a crack, an earlier measurement model was constructed 

using existing analytical solutions. Several analytical solutions for very simple 

geometries have been derived to represent the magnetic field produced by a flaw in a 

conductor. In the case of direct current injection, these include a spherical flaw in a 
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conducting half space, a flat-bottomed cylindrical flaw in a half space, and an elliptical 

flaw in a conducting plate (2-D). Scans of standard flaw specimens have experimentally 

validated these models [11,12].. 

The earlier measurement model constructed used the solution of the perturbed 

magnetic field due to an elliptical flaw in a conducting sheet containing injected current. 

In the elliptical model, the major/minor axes can be varied and also allows the limiting 

case of when the minor axis goes to zero (approximating a crack). By using 

superposition (Born approximation), one ellipse can act as the fastener hole and another 

ellipse, translated to one side, can act as a crack emanating from that hole as shown in 

Figure 2.2. 

Fastener hole 

Crack 

Figure 2.2 Hole/crack superposition model using ellipses 

The superposition is only an approximation since it assumes non-interaction between the 

hole and the crack but provides a view of the critical issues confronting crack detection. 

Boundary Element Method Measurement Model 

The Boundary Element Method (BEM) provides the basis for the updated 

measurement model of a hole with a crack and is more accurate than the superposition 

model used for preliminary analysis. The superposition model was not accurate for the 
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geometry used since the hole and the crack interact when they are in close proximity. The 

BEM formulation solves for the potential problem of the hole and the crack together and 

thus, accounts for their interaction. The BEM model has replaced the superposition 

measurement model for use in generating signals used in the POD analysis. 

By applying the law of Biot and Savart to the modeling of dc-current injection, an 

integral for the magnetic field results in a form that can be solved using BEM techniques. 

The law of Biot-Savart states that the magnetic field at a field point c can be determined 

from the volume integral over the region 9i of the curl (with respect to the point c) of the 

gradient of the scalar potential V, at the source point q, divided by the distance r between 

the source and field points 

5(c)=-M[vcx Vfa)' 
r(c,q) 

dr{q) . (2.1) 

But 

V x 
, r{c,q) 

( 
:-V9X Vfe)l, Wfa) 

, r(ctq) icq) 
(2.2) 

and, for the case of a homogeneous, isotropic medium, V satisfies Laplace's equation 

(i.e., Fis a scalar potential field and Vx \y(scalar)]= 0) and the second term on the right 

hand side of the above equation equals zero. Therefore, 

V x 
r(c,q) 

(^i 

= -Vqx 
ic>q) 

(2.3) 

and now the integral is a function of q only (so we can hereafter drop the q notation), 

Jk(„\-W [xiJ^L 5(c) = ^fVx dr. (2.4) 

13 



One of the vector integral theorems [13] states that for a general vector F, 

f VxFrfr = d* nxFdQ, 
J<R Jn 

(2.5) 

where Q represents a 2-D surface. This is derived from the divergence theorem 

\s/-Adr = <\ A-hdQ (2.6) 
hi Jn 

by a substitution of A = F x c where c is some arbitrary constant vector [14]. 

By applying this vector integral theorem to Eq. (2.4) and expanding out the cross 

product term, the integrand term can now be represented as 

.   VV    1 
MX = — 

r      r 

8V       3V\ ( 
n„ n,— i - y dz      2 dy) V 

(    dV       8V\. 
-n:-T-\J + 

dV       dV 
nx n — 

dy 3c 

^. 
. (2.7) 

dz dx,) 

Now, assuming that the integration over the volume can be accomplished by taking thin 

slices perpendicular to the z-axis, then the resulting surface integral of this slice is over a 

top and bottom surface and a bounding side surface (see Fig. 2.3). 

Figure 2.3 Surface integration of slice 

Looking at each one of these surfaces separately: 

1) Top surface: normal is in positive z-direction only, 

nx.— 
v /lop 

-n. 
dV_ 

i +• 
r,\ 

(2.8) 

where dV/dy,dV/3c are evaluated at the top surface. 
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2) Bottom surface: normal is in negative z-direction only, 

nx  
v bottom 

n. 
dV_ 

4>. 
i +— -n. 

dV_ 
ck J> (2.9) 

where dVjdy,dVfdx are evaluated at the bottom surface. Note here that r, and rb 

differ by the slice thickness h in their z-component, i.e. if rt is represented by 

r,=j(xc-x)2+(yc-y)2+{zc-z)2, (2.10) 

where the subscript c denotes the coordinates of the pickup coil, then rb is 

represented by 

rh=^{xc-x)2+{yc-yf+{zc-[z-hf. (2.11) 

3) Bounding side surface - normal is in x-y plane only, 

(     xiv\ 
nx- 

VF If    aV\    If    W\.    \f    dV 
' side 71"' A r~A"'ct j+- 

dV 
— n„ 

dy      y äc 
k,     (2.12) 

where all derivatives are evaluated at the bounding side surface. 

The total surface integral is then the sum of these three cases. If it is further 

assumed that only 2-D current flow exists within this slice, then there will be no variation 

of the potential in the z-direction and the resulting derivatives of the potential at the top 

and bottom surfaces will be equal 

dV 
= 0 

dz 
dV 
3c 

dV 

top     dx 

dV 
dy 

_6V 

tor,     ty 

bottom 

bottom 

&x 

dV_ 

dy' 

(2.13) 
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The cross product term is now 

nx  
v J 2D 

i   iY  ov 
n 

\r,    hj ' dy 
i + 

1     1 V 

\r>    hj 

aV 

ax 
j + - 

1 aV        aV 

dy 
■-"„ 

dx 
k.   (2.14) 

This relationship shows that the magnetic field, for the assumption of 2-D current flow, 

has components in all three directions. For the conventional SQUID magnetometer 

system, the pickup coil is oriented in the x-y plane and thus measures only the z- 

component of magnetic field. Therefore, the only component of interest here is 

nx- 
VV^ 

'2D z-direclion 

aV        aV 
nx n — 

dy a\ 

Y 

This result can be rewritten as WJr dotted into the tangent vector: 

t = 
dx dy 

Kds ds, 

dy    dx\ - 
" = l-f--— U-n = 0 

ds    ds) 

t=(-n ,nx) 

nx- 
VF    1 f aV       aV)_(vV-t) 

V 
nx n 

dy Ox 

(2.15) 

(2.16) 

So, with this substitution and letting q -+Q on the boundary, the final result for the 

magnetic field (in the z-direction) at the field point c as a function of the tangential 

derivatives of the scalar potential is 

A(0]= A.O- f VP(g)-? 
An Jn   r(c,Q) 

dQ (2.17) 

For the assumption of 2-D current flow within the thin slice (thickness h), the integrand 

of Eq. (2.17) is approximately constant in the z-direction and the surface integral can be 
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represented as a line integration multiplied by the thickness h. In this way, a pseudo 

surface integration can be done over the surface Q where dQ = hds (see Figure 2.4). The 

final form of the boundary integral to be solved can now be represented as 

^-^~Sä^ (2.18) 

Figure 2.4 Relationship between surface and line integration 

Some care must be exercised here to keep track of the sign as you move around the 

boundary during the integration of Eq. (2.18). Convention is to define the positive 

direction along s as to keep the material on your left as you move along the boundary. 

Integration direction around the boundary of the fastener hole with a crack is shown in 

Fig. 2.5. For the upper surface of the crack, the integration direction is in the positive x 

direction (ds = dx) but, for the lower surface of the crack, the integration direction in the 

negative x direction (ds = -dx). 
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Figure 2.5 Boundary integration direction 

Appendix A details the mathematical formulation [15] that will be applied to 

solving these boundary integral equations. In this formulation, the crack is modeled 

through the Green's function and not through the boundary of the crack eliminating the 

difficulties and inaccuracies associated with mesh construction around the crack tip 

region. The boundaries of interest here have been separated into those associated with the 

crack (s = JT) and non-crack (s =S) boundaries since different techniques will be required to 

carry out the integration for each. 

Non-crack boundaries (s = S) 

The BEM program calculates dV/dt as a piecewise linear result since V(Q) is 

piecewise quadratic. Letting V, = VV ■ i be the tangential component of the gradient of 

the scalar potential, we have for the line segment along s 

VXQ) = bx+b2s, (2.19) 

where bx and b2 are different for each line segment. This is done for all boundary surfaces 

except for the crack surface (I) (e.g., fastener hole, plate edges, etc.). Substituting this Vt 
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into the integral for B/c), Eq. (2.18), gives the contribution to the magnetic field at point 

c due to all non-crack boundaries 

»Ms=^l!&4Ql An  ^r(c,Q) 

To carry out the integration, the geometrical relations for r and s must be determined 

(2.20) 

pickup coil 

Figure 2.6 Geometrical relationships for integration 

From the Fig. 2.6 we can see that 

r = ■ 
D 

COS0 

rd6       DdG 
ds = 

cos 6    cos 6 

s = Dtan0\6
e

2 =>£>(tan0-tan#,). 

Therefore, for non-crack boundaries, the integral is now 

(2.21) 
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R ( \\   - ^o°^ f 6i + VXtanfl-tanfl) Dde 

B^C)\s-  Ajr  1 D cos2 6 An  "S 

An 

Mod* 

COS0 

Bi f -±-dd+b2D f -*^<W 

4;r 
Äln^tan 

4 + 2. 

cos'0 

COS0 

(2.22) 

where Bl=b1- b2Dtan0l (constant term). Since the surface S is divided into n segments, 

the summation of this equation evaluated over each segment for which Vt is defined by a 

single linear equation (each with a different b] and b2) will determine Bz at the pickup 

coil: 

B,(0 = Z^ £,ln<Uan 
KA + 2j 

■ + ■ 
b2D 

COS0 
(2.23) 

where 6X and G2 correspond to the angles between the perpendicular D and each endpoint 

of the segment as the summation moves in a positive sense around the boundary (material 

on left). 

Crack boundaries (s = I) 

For the crack (length a), the singular behavior of Vt at the crack tip requires 

numerical integration to evaluate the magnetic field contribution of the crack. Values of 

Vx will be evaluated near the upper and lower crack surfaces using the BEM program and 

then the magnetic field will be calculated through a numerical integration of the 

previously stated Biot-Savart relation (Eq. 2.1). The series expansion of Vt is given by 

[16] 
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yx -a 

where yj(x)and /2(x) are analytic functions. The first term contains the discontinuity at 

the crack tip while the second term is needed to match far field boundary conditions. On 

the crack surface (/) this can be rewritten as 

*Ja-x^a + x 

= J±U= + f2(x) (2.25) 
-Jp ^a + x 

1 ^(x)+f2{x), 
4P 

where p is the distance measured from the crack tip (see Fig. 2.7). Equation (2.25) is 

well behaved except at the crack tip. On the crack boundary near the crack tip, the 

behavior of Vt can be represented in terms of the potential intensity factor (PIF), 

y I  U 
1 Icrack tip region       —   /-}_ _       '"   ' \i^.£.\3) 

where the plus/minus sign is associated with the upper and lower crack surfaces 

respectively. Note that at p = 0 (crack tip), Vt = «.   The IC factor is proportional to 

crack length (square root) and also to current and can be thought of as representing how 

much current is being diverted around the tip of the crack; the longer the crack length, the 

more current that is diverted. By combining Eqs. (2.25) and (2.26), we can express Fx at 

the crack tip in terms of the PIF 

^M = +;j=-/2M- (2.27) 
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Figure 2.7 Distance p measured from crack tip 

It will be assumed that f2(a), the far field boundary term, is small relative to the crack tip 

term and can be neglected. With the function value at the crack tip now defined, we can 

continue with the numerical integration development. 

Numerical integration 

Numerical integration over the crack is accomplished through discretization of the crack 

boundary into elements. By utilizing a coordinate transformation, Vt can be expressed in 

terms of nodal values and interpolation functions (shape functions) of an intrinsic 

coordinate t,. Once mapped into £-space, Gaussian quadrature numerical integration can 

be used to evaluate the integral. This formulation uses quadratic interpolation functions 

Nm(£) which requires three nodes per boundary element. The crack is modeled with one 

crack-tip element containing the crack-tip node and one regular element (Fig. 2.8). 

The regular element is a straightforward application of the interpolation functions 

but the crack-tip element will use a quarter-point formulation [17] to map the singular 

behavior at the crack tip. The general forms of the quadratic interpolation functions used 

to map the function to be integrated into the %-space are 
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crack-tip element 

S4 S, s2       s, 

regular element 
quarter point crack tip 

Figure 2.8 Discretization of crack into elements 

(2.28) 

which are shown in Fig. 2.9. The coordinate transformation into ^-space of the integral 

results in the following sum 

El \F{s)ds-*Y,\Nk{S)FkJ(s,S)dS, (2.29) 

where Fk is the value of the function at the kth node and J is the Jacobian of the mapping 

that accounts for the spatial scaling associated with the mapping 

d$    4.i at, 
(2.30) 

%<& 

Figure 2.9 Quadratic interpolation functions (a) regular element (b) crack-tip element 
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For those boundary elements (length L) that do not contain the crack tip, the resulting 

integral for Bz becomes 

:lr An f(J > 

if) 
ds 

Mod* pi 
An   •'-1 NM) 

fv,W 
is)L +^) 'V,W 

is)). +NM W 

An   2 J-i 
W V,{LI2) 

_r(L/2), 
+ ^fe) 

r(L) 

J{s,Z)dl;       (2.31) 

which can now be numerically integrated using Gaussian quadrature techniques. 

For the crack-tip element on the upper crack surface, the standard mapping to £- 

space needs to be modified to accommodate the \/4s behavior of V,(s) at the crack tip 

(see Fig. 2.9 (b)). The general approach is to split the Vt (s) term into a singular term 

multiplied by a non-singular coefficient. The form of V, (s) follows from Eq. (2.25) 

To map V, (s) into ^-space, the singular term uses an inverse mapping relationship and 

the non-singular term uses the quadratic shape functions. For the inverse mapping, 

the l/V^ behavior is represented by placing the midnode of the quadratic element at the 

quarter point location 

4 = -1+2jz - V7  Vlfe+i)' 
(2.33) 

The Jacobian is given by 
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•T-f-fM. (2.34) 

Note that at the point where s = 0 (E, = -1), the Jacobian also equals zero. This 

characteristic is important when evaluating the integral of the mapped function. 

Therefore, the Bz contribution due to the crack-tip element on the upper crack surface is 

^lr=- 
_   MoQh rV,{s)dc _   H0ch * 1 (F(S)^ 

An   * r(s) An   *° Jsyrfa) 

- _Mh- f+1_? \ 

(2.35) 

1 An  J-'VZfe + i) 

An        J- 
F(s,) 

-F(s)) ^„tjFis))   ,„,JW 

<s)). + NMm    + *>&) 

F('i) + 

WJ.. ■fe+i)^ 

Also note that as £-»-1, the singularity term (£,+1 in denominator) goes to infinity but is 

canceled by the Jacobian term (£,+\ in numerator) going to zero, thereby making the 

overall function finite in the mapped space. All values of F, r, and s are known, 

including F(5,) = K+/^j2n (from Eq. 2.27) at the crack tip node that has the singularity. 

The crack-tip numerical integration using the quadratic interpolation functions and the 

quarter-point formulation used in the model was verified against an integrable test case 

having the same singular behavior as Eq. (2.24) 

r      1 . _, x 
, =sin  -j-r 

n 

~2 
(2.36) 
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Using the Measurement Model 

A computer program (Appendix B) has incorporated this BEM development into 

a simulated scan of a SQUID over a dc-current injected plate containing a crack. The 

program can accommodate various sample geometries and can include an interior 

boundary (e.g., a fastener hole) if desired. Figure 2.10 shows the basic input variables. 

Calculation of the magnetic field is a two step process. First the BEM 

subprogram must be run to solve for the potentials needed for the integrals involved in 

the magnetic field calculation. This step requires that a boundary mesh be generated 

reflecting the geometry of the sample. The crack is handled through the Green's function 

formulation and does not need to be modeled in this mesh. 

User 
Inputs 

gradiometer coil radii 

gradiometer liftoff 

fastener 
hole radius 

sample 
dimensions 

crack 
length 

BEM 

nodal 
coordinates 

nodal 
tangential 
derivatives 

gradiometer baseline 

x-yscan dimensions 

physical constants 

Model 
Magnetic 
Field Map 

Output 

Figure 2.10 Input variables for BEM measurement model 
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Once the BEM subprogram has calculated the required nodal tangential derivatives, the 

measurement model then steps through each x-y scan coordinate and calculates the 

magnetic field contributions from the tangential derivatives at all the boundary nodes 

(crack and non-crack). The magnetic field is integrated over the areas of the gradiometer 

coils to determine net flux. This output is then plotted in the form of a 2-D magnetic field 

map. 

If the measurement model is to be used to generate POD analysis data, the 

program is set up to loop, using the same BEM input file, while sampling from a noise 

(or system parameter) distribution in Monte Carlo fashion. The peak-to-peak value of the 

magnetic field is extracted from each 2-D scan (one Monte Carlo loop) and represents the 

signal used in the determination of POD. In this way, a distribution of signals can be 

generated for a single crack length. For each crack length, the BEM subprogram is run 

only once, then the signal distribution for that crack generated from the measurement 

model Monte Carlo loops. Calculation of the POD from this data is discussed in Chapter 

IV. 
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CHAPTER III 

COMPARISON OF BEM MEASUREMENT MODEL TO EXPERIMENT 

Comparison Issues 

Several experimental measurements were compared to the BEM measurement 

model. There are some important issues affecting how closely the measurement model 

can represent the experimental measurement. Fabrication of test samples to be used 

specifically for comparison to models is usually a compromise between representing the 

ideal geometries used in the calculations and what is found in an actual aircraft structure. 

In addition, the uncertainties associated with taking experimental measurements make 

comparison as much a qualitative analysis as it is a quantitative one. These issues, and 

others, will be discussed in more detail in Chapter V. 

Also, direct amplitude comparison requires accurate SQUID calibration factors. 

A description of a calibration procedure used in this laboratory is given in Appendix C. 

Only one of the following experimental comparisons utilized this factor. 

Experimental Measurements 

Experimental measurements were made using three different SQUID systems for 

comparison to the BEM measurement model. These experimental measurements do not 

necessarily validate the BEM measurement model but show that the model does do well 

in determining the magnetic fields associated with common test conditions found in the 

laboratory. 
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Calibrated System: SBIR 

A new optimization procedure was conducted for one channel of a 5-channel low- 

Tc SQUID gradiometer system (termed SBIR SQUID) to determine an accurate value of 

the voltage-to-magnetic-field factor required to convert the output voltage of the SQUID 

to units of tesla, which is consistent with the measurement model. This was done so that 

at least one comparison based on accurate experimental signal amplitudes could be done. 

The other SQUIDs used in these measurements do not have optimized calibration factors 

at this time. 

SBIR SQUID is documented as having an axial gradiometer with 5-mm diameter 

pickup and balance coils with a baseline of 20 mm. The calibration factor that was 

determined for channel 1 of SBIR SQUID is assumed to be independent of magnetic field 

source making it applicable to scanning samples with different associated magnetic 

fields. A measurement was made using a 100 mA dc current injected into a 100 mm x 

150 mm x 0.03 mm copper clad circuit board containing a 9 mm diameter hole with a 9 

mm x 0.03 mm slot on one side of the hole (see Figure 3.1). Although this setup does not 

provide completely uniform current injection across the sample (transverse to the slot) 

due to the point source electrodes, the region around the central region should be 

relatively uniform. 
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lOOX 150X 0.03 mm Cu plate 

9X0.03 mm slot 
■ scan area 

9 mm diameter hole 

Figure 3.1 SBIR Experimental setup 

Figure 3.2 shows the contour map resulting from a 2-D scan (unshielded 

environment) over the sample. The optimized parameters (pick-up coil radius = 2.8 mm, 

baseline = 2.06 cm, and liftoff = 14 mm) were used in the BEM measurement model and 

both magnetic maps compared. Figure 3.2 also shows the profile comparison, after 

scaling the experimental result with the optimized calibration factor (6.16 x 10"8 T/V), 

corresponding to the line AA' on the contour map. At this large of a liftoff, the dipole 

signal does not reveal much about the hole/slot geometry but the interest here was to 

ensure that the measurement model was calculating field amplitudes correctly. Using the 

optimized parameters, the measurement model is within 2% of experiment (measuring 

BpP of the dipole associated with the hole and slot). Some difference can be attributed to 

the assumption of uniform current density across the plate, which can have a large effect, 

and is most likely causing the amplitude error seen at both ends of the scan profile. The 

current density non-uniformity can also be seen on the experimental contour map as 

asymmetries in the contour lines. Errors in the optimized parameters or calibration 
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number would show up as a mismatch of the profiles in shape and amplitude beyond that 

attributable to experimental error. 

0.2 

0 50 
x-position (mm) 

100 1 

1- 
A-A' 

i     i     |     i    i i     .    i     i     i 

B2 

WO /        \          / 

Experiment   : 
\ \        y Model 

-n? . l  : 

Figure 3.2 SBIR magnetic field contour map and comparison profile 

Measurements Using Other Systems 

Other comparisons were made using SQUID systems that did not have optimized 

calibration factors. By scaling the amplitudes of the measurement model map to the 

experimental map, the use of the calibration factor was bypassed and then only shape 

comparisons were made. 
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MicroSQUID 

Using MicroSQUID, a comparison experiment used a 5 mA dc current injected 

into a 75 mm x 150 mm x 0.03 mm copper clad circuit board containing a 15 mm x 0.03 

mm slot cut with a scalpel (see Figure 3.3). Figure 3.4 shows the contour map resulting 

75X150X0.03 mm Cu plate 

-J\Mr- 
5 mA-dc 

Figure 3.3 MicroSQUID: Experimental setup 

from a 2-D scan (shielded environment) over the sample with the lines AA', BB', and 

CC. Profiles along these lines on this map are compared to those calculated by the 

measurement model. Magnetic field shape characteristics (matching of peaks andvalleys) 

reflect the accuracy of the measurement model since a difference between the model and 

experiment would show up as a mismatch of the profiles at either the edge or the crack 

locations. The measurement model is in very good agreement (only shape characteristics 

compared) with experiment for all profiles. A slight mismatch at the right side of AA' 

can be seen and is most likely due to a small variation in liftoff during a scan (i.e. sample 

not level). 
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Experiment 

Measurement Model 

Figure 3.4 MicroSQUID magnetic field contour map and comparison profiles 

Mobile HTS SQUID 

Another measurement used a 50 mA dc-current injected into a 100 mm x 150 mm 

x 0.03 mm copper clad circuit board containing a 9 mm diameter hole with a 9 mm x 

0.03 mm slot on one side of the hole (see Figure 3.5). However, the SQUID used for this 

measurement was a high-Tc system [24] which used a planar gradiometer (the pickup and 

balance coils are in a plane parallel to the sample surface) instead of an axial one. Figure 

3.6 shows the contour map resulting from a 2-D scan (unshielded environment) over the 

sample. The quadrapolar shape results from the planar gradiometer acting as a spatial 

differentiater and, by taking the derivative of the dipole-shaped magnetic signal, results in 

a quadrapole shape. Since the planar gradiometer was oriented parallel to the plate 

edges, the edge signal is approximately zero and therefore, only that part of the scan 
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lOOX 150X0.03 mm Cu plate 

9X0.03 mm slot 
• scan area 

9 mm diameter hole 

Figure 3.5 Mobile HTS: Experimental setup 

above the hole/slotwas used in these comparisons. Figure 3.6 also shows the profile 

comparisons, after scaling, corresponding to the lines AA', BB', and CC on the contour 

map. The measurement model is in very good agreement (only shape characteristics 

compared) with experiment for all profiles. Again, a difference between the model and 

experiment would show up as a mismatch of the profiles at the location of the hole/crack. 

m     u 

pa     u 

Figure 3.6 Mobile HTS magnetic field contour map and comparison profiles 

34 



CHAPTER IV 

POD CURVES FROM SIMULATED EXPERIMENTAL DATA 

Probability of Detection 

Introduction 

In general, inspection systems must use some criterion to "accept or reject" the 

part being tested. A threshold (associated with a minimum crack size) can be set so that 

the signals above the threshold are rejected and those below accepted. Figure 4.1 shows 

the cumulative distribution of rejected signals for a range of signals around the threshold. 

For an ideal inspection system, no signals below the threshold would be rejected and 

100% of those above the threshold would be rejected. But, for real systems, uncertainties 

in the measurement process cause the curve to be rounded, creating two regions of error. 

False accepts (type I error) are signals above the threshold that are missed leading to 

issues of safety. False rejects (type II error) are signals below the threshold that are being 

unnecessarily rejected leading to issues of cost of repair or replacement. 

1.0 

Cumulative 
Distribution of 

Rejected Signals ''•' 

0.0 

Risk 

Cost 

Figure 4.1 Cumulative distribution of rejected signals: real versus ideal 
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Determination from Experimental Data 

Determination of POD requires that the underlying signal distribution of the data be 

known (or assumed). The distribution of signals results from such things as sample related 

variability (e.g., material properties, crack geometry and orientation) and measurement 

system variability (e.g., sensor characteristics, liftoff, scanning, calibration, and different 

users). The POD(a) is determined by integrating this signal distribution, /a(a), above 

some specified signal threshold alh, 

POD(a)= Jf,(fl)dfl (4.1) 
a* 

as represented by the shaded areas in the upper part of Fig. 4.2. This integration is done at 

each crack length resulting in the POD curve shown in the lower part of Fig. 4.2. 

POD = shaded area 

Signal    tf* 

Probability 
of Detection 

Crack Length (a) 

Figure 4.2 Integration of signal to determine POD 
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If the analysis is using simulated experimental data through use of the BEM 

measurement model and Monte Carlo methods, then the POD at a given crack length is 

determined through direct numerical summation of those signals above the threshold 

POD(a) oc ^(response signals >alh). (4.2) 
N 

This approach does not require that the distribution of the signals be known. 

For real experimental data, it is commonly assumed that the distribution of signals 

at a fixed crack length, fa{a), is normally distributed. Then a functional form is used to 

determine POD. Previous studies [25] have shown that NDI experimental data commonly 

have a POD functional form that follows the log-odds or log logistic model 

POD(a) = \l + exp 
xflna- n (4.3) 

where ju represents the central location of the POD curve and cr is a measure of the flatness 

of the POD curve (larger <x, flatter POD curve). Another POD function that has been used 

[26] is the Weibull function 

POD(a) = 0 

= 1 - exp 

a<a, lh 

a-a, lh 

\       *l 
a>alh, 

(4.4) 

where a is the bandwidth, and TJ is the central tendency of the POD function. 

NDE reliability data normally falls into two types, either data in which the 

inspection result was recorded as pass or fail, meaning that a flaw was either found or not 

found, or data in which the measuring instrument signal ä, in response to an actual crack of 
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size a, was recorded. For pass/fail data, the distributional parameters (e.g., ju and a) for the 

POD function can be determined using maximum likelihood methods. Details describing 

these methods can be found in [25,27]. For signal data, regression analysis can be used to 

estimate the distributional parameters. In this case, the log-odds model is reparameterized 

to 

In 
POD{a) 

= ä + ß In a 
\-POD(a) 

rewritten as (4.5) 

Y = ßX + ä    where 7 = In 
(  POD(a)  ^ 

X = \na, 
\-POWa), 

which shows that the data plots linearly in log-space and ä and ß can be determined from 

linear regression. 

SQUID systems measure signal type data as an output voltage proportional to the 

magnetic field being measured.   Signal data has the advantage over pass/fail data since it 

contains more information and, as a result, requires a smaller minimum number of samples 

to conduct an analysis. For example, it is recommended [25] that at least 60 flaw samples 

be used for a pass/fail analysis versus 30 for an ä analysis. Other advantages of signal data 

include: 

-   The underlying assumptions of the POD model are easily tested with statistical tools. 

Since the POD model is derived from the correlation of the ä versus a data, the 

assumptions concerning the POD(a) model can be tested using the signal data. Also, 

the pattern of a shows the acceptable range of extrapolation. 
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- The decision threshold is set after the signals are recorded allowing examination of the 

effect of different settings on POD without rerunning the experiment. 

- The POD model is valid over large flaw size range and it is not critical to obtain a larger 

sampling of flaws around the area of steep slope on the POD curve. 

Confidence Bounds 

Aircraft requirements specify that a 95% confidence bound region be determined 

for these curves. For experimental data using the log-odds model, a method from [29] can 

be adopted to calculate the lower confidence bound. The y-percent lower confidence bound 

is given by 

POD(a) = ^{zL), (4.7) 

where 

z, = z-  |— 
z2    (X-Xf    1 

2        SSX 

and 

X = lna 

—     1   N 

X = — Yin a, 

N = sample size 

A = yth percentile of a %2 - distribution (2 dof) 

N 1    ( N 

z = 

#Ui 
X-Ji 
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For simulated data using the BEM measurement model, Monte Carlo simulations 

will be used to determine the 95% lower confidence bound and only require that the 

signal and noise distributions be known. This will be discussed further when these values 

are calculated in a later section. 

Importance of Setting Threshold Value 

It is important to note the dependence of POD on threshold value. The threshold 

value is primarily a function of background noise and the choice of the minimum signal- 

to-noise ratio for which a crack can still be seen. This is very dependent on the 

instrument, technique, and user of an NDE inspection system. The tradeoff with setting 

the threshold lower to increase POD for a particular crack length is the simultaneous 

increase of the probability of false alarms (POFA) arising from the background signal 

being mistaken for a crack signal. The POFA is calculated in the same manner as POD 

with the noise distribution being integrated above the threshold value. 

oo 

POFA= |Noise(a)da (4.8) 
au, 

Figure 4.3 shows schematically the normalized distributions of the background 

noise and the crack signal pointing out the regions of concern and shows the tradeoff 

between POD and POFA when decreasing the threshold. 
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Noise 
Distribution 
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Figure 4.3 Effect of setting threshold value 

Progression of POD Approaches 

The following discussion of some of the earlier POD approaches leads up to the 

present approach and points out some of the critical items that were important in deciding 

how best to determine POD for SQUID systems. 

Failure of Superposition 

Initial POD work utilized a superposition model consisting of an elliptical crack 

superimposed on a hole in an infinite plate (refer back to Fig. 2.2). Superposition implies 

that the hole and the crack are behaving independently and do not influence each other 

when in close proximity. The errors associated with superpostion approximations can be 

illustrated by direct comparison to the BEM model. Figure 4.4 displays centerline 

profiles for a 5 mm hole with a 5 mm crack at liftoffs of 3 mm and 1 mm revealing how 

the superposition approximation breaks down as liftoff distance is reduced. 
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Figure 4.4 Comparison of BEM and superposition models 

It is apparent that in these cases the hole-crack interaction cannot be neglected. However, 

for greater liftoffs and/or smaller crack lengths, the superposition model error is not as 

significant and may be used in calculating approximate fields. Figure 4.5 shows that for a 

smaller crack size of 3 mm, the superposition profile is not as distorted as compared to 

the 5-mm crack length case in the upper part of Fig. 4.4. 
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Figure 4.5 Comparison for a 5-mm hole with a 3-mm crack 

Standard Hole Subtraction Technique 

One analysis technique that was examined was that of subtracting a standardized 

hole from the hole-with-crack signal to extract that part of the signal due to the crack (see 

Figure 4.6). This was done by subtracting the 2-D magnetic map associated with a scan 

over a standard fastener hole from the 2-D map of the hole with crack. The resulting 

"residual" 2-D map could then be thought of as the magnetic field due to the crack alone. 

The peak-to-peak value of this residual map was defined as the crack signal. 

Hole + Crack Hole Crack 

Figure 4.6 Subtraction of standard hole to extract signal due to crack 
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Unfortunately, in real experimental data, it is difficult to determine exactly where 

in the resulting magnetic map the hole is located so that there will be an uncertainty 

associated with this subtraction process. Figure 4.7 shows the sensitivity of the crack 

signal to the variation of the position of the subtraction hole. The left graph represents the 

crack signal (the "residual" signal) as the subtracted hole position was varied in a 

direction transverse to the crack. The right graph is determined the same way with the 

subtraction hole position varying this time parallel to the crack. The relative magnitudes 

of the crack signals for the two graphs show that the response surface was more sensitive 

to variation in the subtraction hole position in the direction parallel to the crack. 

Crack 
Signal    , 

(normalized 
units) 

-20 0 20    -20 0 20 
Distance Between Subtracted Hole Center Distance Between Subtracted Hole Center 

and Actual Hole Center (mm) and Actua! Hole Center (mm) 

Figure 4.7 Crack signal dependence on subtraction hole position (Note the differing 
vertical scales) 

Since the residual crack signal was dependent on the position of the subtraction hole, the 

POD was dependent upon the uncertainty associated with this subtraction process. For 

illustrative purposes, a distribution was placed on the subtraction hole position to 

simulate the experimental situation. An independent bivariate normal distribution, 

44 



N(0,1 mm), was assumed for the subtraction hole position, then a sampling of 1000 

random positions results in a distribution of residual crack signals shown histogram 

format in Figure 4.8. 

Number of 
Occurrences 

Residual Crack Signal 

Figure 4.8 Histogram showing distribution of residual crack signals 

The characteristics of this distribution arose from the behavior of the residual 

crack signal (variation shown in Figure 4.7) and the assumed distribution of the 

subtracted hole position. The sharp truncation on the left side of the distribution was a 

result of the residual crack signal having a local minimum around the actual hole center; 

any movement away from this center resulted in an increase in the residual crack signal. 

The peak/tail characteristic can be attributed to the assumed normal distribution of the 

subtraction hole position. If the assumed distribution had a larger than 1 mm standard 

deviation, the residual crack signal distribution would spread out more to the right but the 

truncation would remain fixed. 
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The POD at each crack length was determined by integration of the residual crack 

distribution, determined for each crack length, above a threshold as previously stated in 

Eq. (4.1). The threshold was set to satisfy SNR>2. 

The POD curve, a result of direct numerical summation of the Monte Carlo values, 

is shown in Fig. 4.9. It is common to assume that the crack signal distribution is Gaussian 

(normal). As a comparison, the distributions (like the one shown in Fig. 4.8) were fit with 

Gaussian distributions and a second POD curve determined, (also shown in Fig. 4.9). The 

correct POD curve (shown darker on the graph) has a sharp, asymmetrical shape. The sharp 

transition to a POD=l comes from the narrowness of the crack signal distribution and the 

asymmetry comes from the long narrow tail of this distribution. As can be seen, the normal 

distributions commonly assumed for these calculations might lead to significant error when 

calculating POD. The crack length values are retained for scale in this comparison and 

should not be used to infer SQUID performance. 

Probability 
of Detection 

Correct 
(numerical summation) 

1.0 1.5 2.0 
Crack Length (mm) 

2.5 

Figure 4.9 Calculated POD curves for hole subtraction scheme 

46 



Present POD Approach 

Since the hole subtraction process added additional uncertainty that negatively 

affected POD, it was desirable to be able to determine POD without this subtraction. It 

has been determined that POD can be calculated from the hole-with-crack signal directly. 

For this approach, the "signal" is no longer the peak-to-peak residual signal after 

subtraction, but the overall hole with crack peak-to-peak signal. Figure 4.10 shows the 

centerline profiles of the magnetic maps resulting from simulated scans over a hole with 

crack for four different crack lengths while keeping the hole diameter constant. 

Signal 
(arbitrary   00 

units) 

-0.5 

-1.5 ■ k 

10 20 30 40 

Centerline position (mm) 

Figure 4.10 Scan centerline profiles for various crack lengths (with hole) 

As can be seen, for increasing crack length, the signal amplitude increases. Also, the 

asymmetry increases, pulling the crack side of the dipolar signal to the right while the 

hole side remains relatively fixed. The important characteristic for POD is the increasing 

47 



peak-to-peak value as a function of crack length, which is the "signal" used in the POD 

analysis. The effect of increasing crack length on signal is apparent without subtracting a 

standard hole. For comparison, Fig. 4.11 shows the corresponding scan profiles for 

cracks alone with no fastener hole (normalized units of signal are on the same scale). 

Here, the profiles are symmetrical but still show the important characteristic of increasing 

amplitude for increasing crack length. Either type of data (Fig. 4.10 or 4.11) can be used 

to calculate POD. 

0.3 

Signal 
(arbitrary 0 0 

units) 

10 20 30 
Centerline position (mm) 

40 50 

Figure 4.11 Scan centerline profiles for various crack lengths (no hole) 

When the peak-to-peak signals from Figs. 4.10 and 4.11 are plotted as a function of crack 

length, comparisons can be made between the two (see Fig. 4.12) at a given liftoff (each 

liftoff distance would have a corresponding curve). The crack-only case can be shifted by 

adding the signal from a hole with no crack (corresponding to the hole-with-crack case at 

crack length = 0; in this case, a signal value « 1.5). 

48 



Peak-to-Peak  15 
Signal 

(arbitrary 
units) 

1.0 

0.5 

0.0 

Crack only (shifted) 

Crack only_ 

12 3 4 

Crack Length (mm) 

Figure 4.12 Signals as a function of crack length 

Looking at this shifted curve, it is important to notice that the addition of a 

"standard" hole to the crack signal is not equivalent to the corresponding hole with crack. 

The unusual characteristic of Fig. 4.12 is that the BEM model results in signals that 

increase more quickly as a function of crack length than with the cracks alone. This is 

saying that it is easier to see a 3 mm crack on a fastener hole than it is to see a 3 mm 

crack by itself. This also points out that the hole subtraction scheme discussed earlier 

will not result in signals representative of cracks alone and would only work if the 

principle of superposition applied where the hole and the crack behave independently. 

Instead, the hole and the crack are not independent, in fact, the existence of the hole 

seems to enhance the detection of the crack. It has been suggested that the hole may be a 

"crack amplifier" due to the hole's influence on the current density in the region near the 

crack causing the larger signal as compared to the signal from a crack alone of the same 
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size. This can be illustrated by looking at the current flow (potential streamlines) using 

the relation (normalized to the free stream current density) 

y/(r): 
(        1>2\ 
1- 

R' 
sin 6). (4.9) 

These were plotted (constant values of y/) for a region around the fastener hole in Fig. 

4.13 and shows the current density concentration. For current injection transverse to the 

crack, the crack is located directly in the region of high current density possibly causing 

the greater signal 

region of high 
current density 

Figure 4.13 Current flow concentration around fastener hole 

contribution observed in the hole-with-crack case. The variation in current density can be 

determined by differentiating Eq. (4.9) in this region (x = 0) with respect to the radial 

direction transverse to the current flow. 
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at « = 90°, sinöJ = l, r -> v (4.10) 

dy{y)= d 

dy       dy 

( 
y 1- 

R_ 

y2 

2\ 
1       *' 

■1+7 

Fory > i?, Fig. 4.14 shows shows that the current density doubles at the surface of the 

hole and approaches one away from the hole. 
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Figure 4.14 Current density concentration near fastener hole (R = 2.5 mm) 

One item to mention here is how this may affect the superposition model used 

previously. Since the current density concentration was not taken into account in that 

model, the contribution of the crack (thin ellipse) may have been underestimated. If we 

refer back to Fig. 4.5, we can see that the right side of the superposition curve 

undershoots the BEM result. By considering the current density concentration, this error 

may be less. But, it is not simply a multiplicative factor associated with Fig. 4.14 (e.g., a 

factor of two near the fastener hole) since this would scale the entire dipole signal 
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associated with the crack and the superposition would then overshoot the BEM result on 

the left side of the profile curve. It might be possible to determine some kind of 

weighting function along the length of the superposition crack (heavier at the end farthest 

from hole down to a value of 1 at the end closest) but, this is simulating something more 

like a "crack-tip current concentration factor" and this is already handled with the BEM 

formulation. However, approximations could be made for a limited range of uses if so 

desired. 

For illustrative purposes, a representative signal distribution and noise threshold 

were selected and applied to both the hole-with-crack and crack-alone cases. Figure 4.15 

shows Fig. 4.12 with the appropriate thresholds and signal distributions sketched in. In 

this way the effect of the current density concentration on POD can be examined since it 

is assumed that both cases have the same signal and noise distributions. It can be seen 

that the standard hole signal level defines the new baseline for the hole-with-crack case. 

Experimental techniques exist [30] which can measure both the maximum signal from the 

hole with crack and the baseline signal simultaneously. However, in the case of a real 

crack, current injected parallel to the crack will still result in a signal contribution from 

the crack (versus zero contribution in the BEM measurement model) so, the baseline 

signal from a hole alone will have an associated uncertainty affecting probability of 

detection. The SNR threshold is the same for both of the cases since the SNR is a 

function of the measurement instrument, not the sample. Also, the signal distribution at a 

fixed crack length would be the same for both cases unless the distribution was dependent 

on the fastener hole {e.g., uncertainty in size or roundness). Usually, this signal 

distribution is dependent on uncertainties in parameters common to both samples 
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Figure 4.15 Determining POD from signal curves 

(e.g., uncertainties associated with the scanning process or the instrument). POD 

determination is the same for both curves; the integration of the signal distribution above 

the SNR threshold (see Eq. 4.1 and Fig. 4.2). Due to the interaction of the crack and the 

hole, the POD values will not be equal (notice the difference in the amount of the 

distribution above the threshold for each case in Fig. 4.15) but, they both are valid 

measures of POD as a function of crack length. The calculated POD curves from these 

two cases are shown in Fig. 4.16. The difference in the curves results from the hole/crack 

interaction, not a difference in how the "signal" was defined, and shows that the hole 

enhances the probability of detection. Again, the crack length values are somewhat 

arbitrary, since the distribution was chosen for illustrative purposes only but they offer a 

sense of scale to the comparison. 
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Figure 4.16 Resulting POD curves for both cases 

The hole-with-crack POD curve shows that a hole with a crack has a smaller 

minimum detectable flaw size than the crack only for a given probability of detection. 

This is directly due to the hole/crack interaction. The effect of the hole increasing the 

current density concentration has a significant effect on the POD. Even though the POD 

curves resulting from these cases can be compared in terms of detectability, the 

hole/crack interaction does not allow direct comparison by use of a baseline hole signal to 

shift one curve (unless you completely understand this interaction). SQUID performance 

will have to be determined separately for each kind of crack type (with hole or without 

hole). 

Determination of POD Curves 

Now that the "signal" has been defined to be that coming from the hole with 

crack, POD can be determined from the hole-with-crack signal distribution (resulting 

from the uncertainties in the system parameters). Sensitivity analyses will be done on 
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selected system parameters to determine how they affect the overall signal distribution. 

Monte Carlo simulations using this signal distribution and experimental noise 

distributions will generate realistic POD curves. 

System Parameter Uncertainty 

System parameter uncertainty can lead to intrinsic noise associated with the 

measurement process. The uncertainty in a parameter manifests itself in the signal 

distribution. To determine POD, the effect of the uncertainty in each system parameter 

must be examined to determine the overall signal distribution. The BEM measurement 

model can be used as a sensitivity analysis tool to look at how the magnetic field varies 

when a system parameter is perturbed within a range associated with the parameter's 

uncertainty. The measurement model can be thought of as representing an «-dimensional 

response surface Wwhere n represents the total number of independent parameters used 

in the model {e.g., liftoff, crack length, and pick-up coil diameter). For a response surface 

comprised of« variables, XJ, such that 

T = JcÄ, (4.12) 
.7=1 

the first order physical sensitivity factor, PS}, is defined as 

PS =^L*^Lforj = \,...,n, (4.13) 

and the mean, ju^, and variance, ö2
^, of 'Fare related to the mean, //,, and variance, o^, of 

each of the variables through the relations 
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II 

7=1 J"' (4.14) 
n 

7=1 

By looking at the combined effect of the physical sensitivities (the PS/s) and the 

distributional characteristics (the aj 's) of the system variables, along with some insight 

obtained by understanding the underlying physical principles, we can identify factors which 

influence the POD distribution most. Those system parameters that have a relatively large 

PS; (sensitivity analysis will show a steep slope on the response surface) or af (system 

parameter distribution will be spread out) will be most important in the determination of 

POD distributions and need to be identified either through analytical or experimental 

means. It may be necessary to treat certain aspects of the inspection process as "black 

boxes" {e.g., data acquisition hardware) and examine outputs as a function of inputs 

without mathematically modeling them. Equation (4.14) requires that the distribution 

characteristics of each parameter be determined or estimated in order to define the overall 

signal distribution used in calculating POD. The following sections will examine the 

parameters of scan resolution, plate thickness, pick-up coil liftoff and pick-up coil tilt 

angle. The uncertainties associated with these parameters will be stated in terms of the 

error (denoted A5pp) in the total peak-to-peak value of the magnetic field Bpp. These 

distributions are all determined for a liftoff at or near 3 mm (minimum distance for our 

SQUID systems) to represent the maximum capability. For other liftoffs, the sensitivity 

analysis would have to be done again to generate a new set of error distributions. 
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Scan resolution uncertainty 

When a sample is scanned under the SQUID, the user-defined x-y grid of the scan 

determines at which locations data will be acquired. The spatial resolution of the image 

is very dependent on the fineness of the grid. It is common practice at Vanderbilt to use a 

1-mra square pixel for scanning. Usually, to reduce the effects of noise, multiple data 

points are taken within the 1-mm pixel (in the scan direction only) and averaged to one 

value for that pixel.   This digitization of the magnetic map can lead to errors in 

determining the signal since the actual dipole extrema are not likely to fall exactly on a 

grid point (see Fig. 4.17). The error is the greatest when the peak is in the middle of a 

pixel; halfway between two of the scan lines in both of the x and y directions. If we look 

at the variation of the extrema values within a pixel region, the sensitivity of the signal, 

Bpp, to scan resolution can be estimated. 

Figure 4.17 Dipole extrema scan resolution error 

Figure 4.18 shows the maximum error, stated as a percentage of the total peak-to- 

peak value, for the dipole extrema associated with a 5-mm fastener hole with a 4-mm 
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crack at a liftoff of 3 mm. This error will have a strong dependence on varying liftoff 

since the shape of the dipolar peaks will change. The error will also be dependent on 

increasing crack length but to a lesser extent (see shape of peaks in Fig. 4.10). The 

dependence of scan resolution error on crack length is a subject of future work. The error 

in the peak-to-peak signal AZ?pp is shown for a 1 mm (scan pixel size) variation in the x 

andy directions (conducted independently) for both extrema. The maximum error for the 

peak-to-peak signal is the sum of the maximum errors for each extrema, for this case, 

ASppS 1.6%. For further liftoff distances, the peaks become less sharp which would 

reduce this error but the peak-to-peak amplitude decreases with a greater effect, causing 

the error to increase. For this same case, but with the liftoff increased to 6 mm, A2?pp = 

6%. 

■« 1 mm - 

1 mm- 

Figure 4.18 Error due to 1 x 1 mm scan resolution 
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Since it is equally likely that the dipole extrema will fall anywhere within the scan pixel, 

the distribution of ABpp associated with the scan resolution uncertainty can be 

approximated with a uniform distribution (in terms of Bpp), ABpp =U(-0.016 Bpp, 0) for the 

3-mm liftoff case. Scan resolution uncertainty always reduces Bpp, which explains the 

minus sign in the distribution. 

One comment to make here is that spatial resolution is also a function of pickup 

coil diameter since the magnetic field is being integrated over the face of the pick-up coil. 

In other words, the magnetic^/ux is measured and represents an "averaged" magnetic 

field at that measurement point. A rule of thumb is to keep the scan pixel size smaller 

than the pick-up coil diameter. Pick-up coil flux integration was done for all calculations. 

Thin plate approximation and plate thickness uncertainty 

The approximations made in the measurement model formulation can lead to 

additional uncertainties in the calculated magnetic field. One approximation was made in 

the integration through the thickness of the plate (see Eq. 2.17,18). It was assumed that 

for a thin plate, the 1/r term was approximately constant over the thickness (no z- 

dependence) and therefore dQ. -» hds with the thickness h assumed constant. This 

reduced the surface integral (Eq. 2.17) to a contour integral (Eq. 2.18) 

ßwi-TÄr* =» *M-^ffilr*fe>   (415) 
An Jn   r(c,Q) An   Js   r(c,Q) 

If we examine the effects of this assumption more closely, the limits of the thin plate 

approximation can be shown. The error arises from the dependence on r, which varies 
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over the thickness h, as shown with rupper and rlower in Fig. 4.19. Only rupper was considered 

in calculating Bz from the contour integral, which was then multiplied by h to represent 

the "2-D" surface integration. 

Figure 4.20 Integration approximation over plate thickness 

By comparing 1/r at the upper and lower contours, we can determine the magnitude of the 

error associated with this approximation 

upper -k-"f*b>.-yf*(f.-'ff 

r^ = k-xY+b>.-yf+{zM*-h)Yf 
rewrite in terms of liftoff, d = zc-z 

= {r2
upPer+(2dh + h2)Y2 

(4.16) 

1/r r j    tinner »/ 

'/    ( 
upper  _ 'lower 

r,„ 

_fu(2dh + h2)f _ 1 + 
2d ( i ^ 

upper VJ"lower        rupper        \ r'upper      ) 

The maximum error is when rupper is at a minimum, rmve=d 

r V   upper J 

( ,. ^ 
+ 

r \   upper J 

<.\lA 

upper 

V' upper 

v> lower [»mif-i (4.17) 
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If the liftoff is much greater than the plate thickness (d» h), the ratio is approximately 

equal to one and the error would be small; this is the thin plate approximation. However, 

for increasing plate thickness for a given liftoff, the error increases (e.g., doubled at h = d) 

and can no longer be considered negligible. At this point, the plate thickness should be 

subdivided into multiple layers (see previous Fig. 3.2) and the integration done separately 

at each successive layer, then added together (superimposed) to determine the total 

magnetic field. 

The plate thickness approximation can lead to error in the calculated magnetic 

field but this can be treated more like a systematic error which does not vary if the scan 

geometry (e.g., liftoff) remains the same. From the standpoint of scan-to-scan 

uncertainty, it is the variation of or uncertainty in the plate thickness h which is of 

interest.   For a constant value of injected current (measured in amps), a variation in h 

will cause the injected current density (measured in amps/m2) to change and thus affect 

the magnetic field amplitude. The magnetic field is directly proportional to the injected 

current density which is proportional to the plate thickness for a constant injected current 

and plate width 

pp\h         Jh       Ä + A/z    ,     .,,, ,A 10\ —Y^—cc—*- = = \ + Ah/h. (4.18) 

A l% variation in plate thickness will cause a l% variation in Bpp. The variation could be 

a result of material processing, sample fabrication, or error when measuring the thickness 

of the plate. Estimating the uncertainty associated with a l-mm plate to be ± 0.05 mm 

(10% variation), ABpp associated with plate thickness uncertainty can be approximated 
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with a normal distribution of N(0, 0.025 Bpp). The standard deviation of this distribution 

was determined by assuming that the maximum error (5%) is associated with the 2-sigma 

point (approximately 95%) of the A5pp distribution. 

Pick-up coil liftoff uncertainty 

The magnetic field is strongly dependent on the pick-up coil to sample distance 

(liftoff). The normalized peak-to-peak values as a function of increasing liftoff distance 

for a 3 mm diameter pick-up coil scanning over a 5 mm hole with three different crack 

lengths (2 mm, 3 mm, and 4 mm) are shown in Fig. 4.20. The inset graph shows a detail 

of the curves for the liftoff range of 3 to 4 mm. Within the range of 1 mm, the curves for 

the three crack lengths are approximately linear with a slope of 30%/mm. Normally, the 

liftoff distance can be determined within ±0.5 mm and therefore, the greatest error due to 

uncertainty in liftoff would be ± 15%.   By assuming that A5pp due to liftoff uncertainty is 

normally distributed, the approximate distribution for A5pp is N(0, 0.075 Bpp). Again, the 

maximum error (15%) is used as the 2-sigma point. 
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Figure 4.20 Sensitivity of Bpp to liftoff for various crack lengths 

Pick-up coil tilt angle uncertainty 

The BEM measurement model has assumed that only the z-component of 

magnetic field (BJ is being measured by the pick-up coil. If the pick-up coil is not 

parallel to the surface of the plate, Bz will be reduced and the other components of the 

magnetic field, Bx and By, will contribute to the signal. These components are associated 

with the i and j terms of Eq. (2.14) 

nx  
'2D 

1__ j_ 
n i + 

1     1 V 

\r,    h) 

8V\ -    1 dV c¥ \ 
n^)J+v\n^-n^ it.(2.14) 

Both terms have a common multiplier dependent on the pick-up coil distance to the top 

and bottom plate surfaces being integrated over. The effect of the multiplier on each of 

these components is similar to the previous discussion on the plate thickness 

approximation where the 1/r values differed at the upper and lower contours at the edge 
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of the plate. Therefore, by similar derivation, the magnitude of the multiplier term is 

found to be dependent on the liftoff to plate thickness ratio. 

1     1      1 1 
r>    r*     r.    [r2+(2dh + h2)f 

greatest difference atr, =d 

111 1 

(4.19) 

l(i-  > ' 
1    r*     d    [d2+{ldh + h2f2     d{     l + h/d) 

This multiplier is reduced even further when considering the geometric term associated 

with the coil tilt angle components in the x and y directions, Ax and A , shown here for 

x-directiön. 

1     1 

1    h coil till 

_   1 

~ d ^    l + h/d) 
sinAr (4.20) 

It can be seen that for the thin plate approximation (h/d « 1), this multiplier term is 

approximately equal to zero and there is basically no magnetic field contributions due to 

Bx and By. For plates where the thin plate approximation is not valid, the geometrical 

term associated with the coil tilt is the dominant reduction term. For example, a 2 mm 

thick plate at a liftoff of 3 mm yields 0.13 sin Ax. For small tilt angles (< 5°), the Bx 

component would then be reduced by almost two orders of magnitude. 

These two components appear to be negligible and therefore only the effect of 

pick-up coil tilt on Bz will be considered. The peak-to-peak value of Bz is reduced by a 

geometrical term associated with the tilt angle. 

B 
pp 

= BnncosA 
lili=X pp 

(4.21) 
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Tilt angle variability is small in the laboratory environment since the SQUID is stationary 

and samples are carefully leveled but, in the field this variability may be much larger. 

For now, we will look at tilt angles < 5°, which result in errors less than 0.5%. Since the 

tilt angle will always result in a reduction of Bpp, the distribution for ABpp is a truncated 

distribution (only negative values used) and is dealt with mathematically by taking 

negative values from N(0, 0.0025 Bpp). 

Noise Measurements 

Noise distributions must be characterized in order to determine POD and POFA. 

Several noise distributions have been extracted from existing experimental data for 

different SQUID systems and measurement techniques. The measurement model 

simulates dc-current injection and experiments using direct dc-current injection have 

large noise distributions since they use the entire bandwidth of the SQUID (dc to 

~10kHz) and therefore, include noise over these frequencies as well. Noise conditions 

associated with other experimental techniques are more representative of what SQUID's 

will be operated in. Techniques based upon eddy current inducers [29, 24] use lock-in 

amplifiers at a particular frequency and greatly reduce the noise. Figure 4.21 shows a 

noise time series extracted from experimental data (dc-current injection in a shielded 

environment) by taking a single scan line away from any known flaw in the specimen 

being examined. 
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Figure 4.21 Experimental noise time series 

As can be seen, the noise is approximately 100 pT peak-to-peak. A x2-test confirmed that 

this noise distribution is normally distributed at a 5% significance level. With the 

inducing plate technique, use of the lock-in amplifier reduces this to about 5 pT peak-to- 

peak, a noise reduction factor of 20. Since we are also interested in taking measurements 

in an unshielded environment, noise distributions have been extracted from scan data 

taken using the same HTS-SQUID that was used in some of the experimental 

comparisons. Figure 4.22 shows noise time series for both the dc-measurement (upper) 

and the inducer measurement using the lock-in (lower). The dc-measurement data shows 

approximately 400 pT peak-to-peak noise while the lock-in measurement data shows 

about 2 pT, a noise reduction factor of 200! POD values determined using noise 

distributions similar to that shown in the lower part of Fig. 4.22 will represent present 

SQUID capability. Previous tests have shown that SQUID experimental noise can be 

assumed to be gaussian or "white" and therefore, the noise distribution used for dc- 

measurements was N(0, 58.48 pT) and for lock-in measurements was N(0, 0.475 pT). 

These noise distributions were used in the following Monte Carlo simulation. 
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Figure 4.22 HTS-SQUID noise for dc (upper) and lock-in (lower) measurements 

Monte Carlo Simulation 

A realistic test scenario 

Signal strength is dependent on the amount of dc-current injected into the sample. 

When using the standard dc-current injection technique, it is a common approach to 

increase the current until adequate SNR's are achieved, making POD primarily dependent 
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on how large a current source one might have. However, the dc approach is not practical 

and is not likely to be used in field applications. Instead of simulating dc-current 

injection directly, the BEM measurement model will be used to approximate the fields 

associated with the eddy-current inducing plate [29] mentioned earlier which produces 

"dc-like" currents within the sample. To do this, an estimate of the current density must 

be made from [30] to calculate magnetic fields of the correct magnitude. The inducing 

plate normally carries a current of approximately 0.04 mA/mm. This produces eddy 

currents on the order of 0.01 mA/mm2 in the top 1 mm of an aluminum plate. 

Unfortunately, for the thinner plates commonly found in aircraft fuselage lap joints, the 

eddy currents in the bottom of the plate (in the opposite direction) reduce the overall 

signal by about 40% for a 1 mm plate. This yields a final estimate of current density of 

0.006 mA/mm2. This is a representative value associated with state-of-the-art detection 

techniques used in SQUID NDE. 

The test sample geometry used for these simulations was a 1-m2, 1-mm thick 

aluminum plate containing a 5-mm fastener hole with crack lengths ranging up to 4 mm. 

A uniform dc-current of 0.006 mA/mm2 was injected in a direction transverse to the crack 

for maximum signal. The modeled SQUID system utilized a 3-cm baseline axial 

gradiometer with 3-mm diameter pick-up and balance coils. The plate was scanned using 

1-mm2 x-y pixels at a pick-up coil to plate surface liftoff distance of 3 mm. 

Steps of Monte Carlo distribution sampling 

Monte Carlo simulation, utilizing the results from the BEM measurement model, 

was used to sample from the uncertainty distributions of scan resolution, plate thickness, 
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pick-up coil liftoff and pick-up coil tilt angle to generate an overall signal distribution. 

The resulting signal distribution was then compared with the noise distributions 

associated with ac and dc measurements to determine POD. A 95% lower confidence 

bound was then generated by iterative generation of multiple signal distributions at each 

crack length. The Monte Carlo simulation steps are outlined here: 

1. For each crack length, sample 1000 times from each of the four system parameter 

distributions to generate 1000 values of total error in Bpp -» (Z ABpp). This, added to 

Bpp, constitutes the signal distribution to be compared to the noise distribution. 

-Distributions used related to system parameter uncertainty 

ABpp (scan resolution): U(-0.016 Bpp, 0) 

ASpp (plate thickness): N(0, 0.025 Bpp) 

ABpp (pick-up coil liftoff): N(0, 0.075 Bpp) 

ABpp (pick-up coil tilt angle): negative values from N(0, 0.0025 Bpp). 

2. Within the same sampling loop as step 1, sample 1000 times from the noise 

distribution. In this way, each Bpp will have a corresponding noise value. 

-Noise Distributions 

dc: N(0, 58.48 pT) 

ac(lock-in): N(0, 0.475 pT) 

3. Compare each signal-noise pair (1000 pairs) to determine whether Z?pp> (noise x 

SNR). If yes, then increment "detected" counter. Otherwise, increment "missed" 

counter. A signal-to-noise ratio (SNR=2) was introduced at this point to represent a 
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detection criteria such that, when the signal-noise pair is compared, the signal value 

must be at least twice as large as the noise value to count as a "detection". This is 

basically the "threshold" of the POD integration. 

4. Then, for that particular crack length, the POD = (# detected)/l 000. 

5. For determination of 95% lower confidence bound, run steps 1 through 4 100 times to 

generate a distribution of POD values. Sort the 100 values in ascending order (lowest 

POD to highest POD). The 95% lower confidence bound value is such that 95% of 

all POD values in this distribution are above this bound; this corresponds to the 5,h 

POD value in the sorted sequence. 

6. For each crack length, run steps 1 through 5. Forty crack length increments were 

used for these calculations. For the dc-noise calculation, this corresponded to a range 

of (0 - 4 mm). For the ac-noise calculation, the range was (0 - 0.05 mm). 

Using the sampling numbers listed in steps 1 through 6 resulted in a total number 

of Monte Carlo simulations of (1000 /parameter)(5 parameters)(100 POD loops)(40 crack 

length increments)(2 noise distributions) = 40 million points. This would not be easily 

accomplished experimentally; at one measurement per minute, it would take over 75 

years! 

Monte Carlo generated POD curves 

Figure 4.23 shows the histogram representation of the signal and noise data 

generated (steps 1 and 2) for the 5-mm hole with a 1-mm crack in the dc-measurement 

case. The noise distribution was defined to be one-sided (a rectified normal distribution) 

70 



since the signal distribution has only positive values (peak-to-peak values are always 

positive). In this way, the noise distribution is represented in a peak-to-peak sense so that 

the distributions can be compared. In the noise histogram (lower), the signal histogram 

(upper) has been appropriately scaled and overlaid (dashed line) to show the region of 

overlap of the two distributions. It is this region which is of interest when determining 

POD. 
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Figure 4.23 Monte Carlo generated signal and noise distributions for the 
dc case (1 mm crack) 
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Figure 4.24 is the dc-measurement POD curve resulting from generating similar 

distributions at each crack length. The abruptness of the POD curve near the origin is due 

to a combination of the relative sharpness of the signal distribution with respect to the 

noise distribution and the one-sidedness of the noise distribution. Also shown 
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Figure 4.24 Ac/dc-measurement POD curves showing 90/95 crack lengths 
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in this figure is the 95% confidence bound that was determined from steps 5 and 6. This 

lower bound can also be calculated using a standard one-sided confidence limit formula 

[31]. For this case, 

where xP0D is the sample mean and sP0D is the sample standard deviation of the 100 

Monte Carlo generated POD values. Lower confidence bounds using Eq. (4.22) were 

much narrower (lower confidence bound very close to POD curve) than those determined 

through direct sampling. It was decided to retain the Monte Carlo derived confidence 

bounds to be consistent with the approach and this would also give the "worst-case" 

lower confidence bound. However, Eq. (4.22) reveals how the confidence bound depends 

on the number of data points or, in the case of Monte Carlo, the number of simulations 

and therefore, will approach the POD curve itself for large numbers of simulations. The 

95% lower confidence limit applies more to experimentally based POD curves that are 

usually generated from a relatively small number of data points. For simulated data, the 

lower confidence bound can be made to basically lie on the POD curve if enough runs are 

made and is not as useful as a concept as for the experimentally derived POD curve. 

The minimum detectable crack lengths corresponding to 90% probability of 

detection at 95% confidence are 1.4 mm for the dc-measurement and 0.0134 mm for the 

ac-measurement. The very small minimum detectable crack length determined for the ac- 

measurement is due to the large noise reduction through use of the lock-in amplifier in 

this type of measurement. 
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PODandPOFA 

In the Monte Carlo simulations, the signal distribution was compared directly 

with the noise distribution to determine POD. For direct sampling from distributions, the 

signal-to-noise ratio set the threshold (alh in standard calculations of POD (see Eq. (4.1)), 

which set the detection criteria. To examine the tradeoff between the probability of 

detection and the probability of false alarm when setting alh, the signal and noise 

distribution data generated by the Monte Carlo simulations can be presented in a different 

format. Refer back to Fig. 4.3 and Eqs. (4.1) and (4.8) regarding the description of POD 

and POFA. The SNR requirements determine where alh is to be placed, thus affecting 

POD (larger SNR requirements correspond to larger minimum detectable crack lengths). 

Figure 4.25 displays the dc-measurement POFA and POD curves for three crack 

lengths, including the minimum detectable crack length, as a function of threshold. By 

setting a threshold, a value for POFA and POD for all crack lengths is determined. As 

can be seen, for a crack length of 0.5 mm, the 90% probability of detection point 

corresponds to a 28% POFA (i.e., there is a 28% chance that noise will be mistaken for a 

signal). There is only a single POFA curve since probability of false alarm is determined 

from the noise distribution, which for these simulations is constant. Figure 4.26 shows 

the ac-measurement POFA and POD as a function of threshold for the previously 

determined minimum detectable crack length of 0.0134 mm. In both the dc and ac 

measurement cases, the POFA corresponding to the minimum detectable crack length is 

approximately zero. This is because the determination of these minimum values was a 
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result of a SNR=2 requirement (equivalent to doubling the noise distribution in Figs. 4.25 

and 4.26). 
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CHAPTER V 

SUMMARY AND DISCUSSION 

Summary 

This research was directed towards the use of a Superconducting Quantum 

Interference Device (SQUID) magnetometer as a tool for nondestructive evaluation (NDE) 

to detect and characterize structural damage occurring in aging aircraft. The primary 

advantage of using SQUID's in NDE over other techniques is their ability to detect 

second layer damage commonly found in aircraft structures. A probability of detection 

(POD) analysis is being done to validate the capability of SQUIDs in this role. A POD 

analysis can be done using real experimental data or simulated experimental data 

generated from a measurement model. A goal in this research has been to develop the 

latter method, where simulation represents the experimental approach, is cheaper and 

faster, and identifies sources of unreliability in SQUID NDE. 

The approach has been to develop a measurement model simulating the scanning 

of a SQUID over a dc-current injected sample containing a crack. The modeled crack 

and fastener hole simulates fatigue-cracking conditions found in aircraft fuselage lap 

joints. Boundary integral equations, using a special Green's function incorporating the 

crack, are used to solve the potential problem. This special formulation eliminates the 

need to model the crack as part of the boundary mesh. From the BIE potential solution, 

the magnetic field above the sample can be calculated through numerical integration of 

the Biot-Savart law. Special techniques, such as the use of quadratic interpolation 
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functions and a quarter-point formulation, were required to accommodate the singular 

behavior at the crack tip. 

Thin copper plate samples containing a thin slot simulating a crack were used for 

experimental comparisons with the BEM measurement model. Several different SQUID 

systems, including a shielded axial-gradiometer SQUID (MicroSQUID), an unshielded 

axial-gradiometer SQUID (SBIR SQUID), and an unshielded planar-gradiometer SQUID 

(Mobile HTS SQUID), were used. Comparisons of scan centerline profiles from the 

experimental magnetic maps show good agreement (within a few percent in the region of 

the flaw) with the measurement model for all SQUID systems and test conditions used. 

Differences can be attributed to sample-related noise (e.g., non-uniform current injection 

density). 

Monte Carlo simulation utilizing the results of the BEM measurement model was 

used to generate POD curves. The uncertainty distributions resulting from a sensitivity 

analyses on several system parameters (scan resolution, plate thickness, pick-up coil 

liftoff, and pick-up coil tilt angle) were combined with experimental noise distributions to 

determine POD as a function of crack length. Threshold analysis resulted in comparative 

Probability of False Alarm (POFA) and POD curves. For dc-measurements, the 

minimum detectable crack length that could be found with 90% probability of detection 

with 95% confidence was 1.4 mm. The ac-measurements, which had much lower noise, 

had a corresponding value of 0.0134 mm. The POFA for these two cases was negligible 

due to the signal-to-noise ratio being set to two for the calculations. These small crack 

lengths suggest that additional experimental noise factors will have be incorporated into 

the POD analysis before realistic SQUID NDE capability can be accurately quantified. 
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Discussion 

Factors That May Decrease POD Capability 

The relatively small values of minimum detectable crack length determined from 

this analysis prompts discussion on whether this reflects the true capability of SQUIDs in 

the detection of real cracks near fasteners in aircraft lap joints. Experimental 

measurements using SQUIDs on fatigue cracks in lap joints [36] have demonstrated the 

difficulty in finding cracks, adjacent to fasteners, on the order several millimeters in 

length. For the POD analysis done here, we have considered only four system parameters 

(scan resolution, plate thickness, pickup coil liftoff and tilt angle) and their associated 

uncertainties. Since it is these parameter uncertainties that determine the overall signal 

distribution, and therefore POD, it is apparent that significant parameters have been left 

out of this analysis. More than likely, these stem from sample-related noise associated 

with real measurements, which have not been represented in either the measurement 

model itself or through the parameter uncertainty distributions. Sample-related noise 

results from the geometry of the sample or, more specifically, how that geometry affects 

the current flow used to probe the sample. Figure 5.1 shows how some of these current 

paths can go under and/or through the crack and the fastener, further complicating the 

detection and characterization of the crack. Some of these issues are discussed in the 

following sections. 
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Figure 5.1 Additional current paths complicating crack detection 

Crack shape 

Probability of detection is traditionally stated as a function of crack length to be 

consistent with damage tolerant requirements, which are stated in terms of crack length. 

However, crack shape is an important issue to discuss briefly since cracks of the same 

"length" but different shape could result in different signals. Currently, the BEM 

measurement model simulates a straight-through crack (the same length through the 

entire thickness of the plate) but it is possible to use the model to simulate "3-D" cracks 

to examine the effect of crack "shape" on magnetic field. By creating slices of varying 

shapes and depths (see Fig. 5.2), a pseudo-3D crack can be modeled. The total signal is 

then the superposition or sum of the signals calculated at each of these slices. However, 

as discussed in Chapter II, the model does not allow current flow perpendicular to the 

slices, only in the plane of each layer, and cannot model current going under cracks and 

fastener heads. 

For this work, the "signal" used in the POD analysis has been defined as the 

79 



~M 

Figure 5.2 Pseudo 3-D modeling of a crack using slices 

peak-to-peak value of the magnetic dipolar signal. The dipolar signal has characteristics 

that are related to physical characteristics of the crack. The amplitude of the dipole is 

proportional to crack size. More specifically, for dc-current injection, the signal is 

proportional to the cross sectional area of the crack. For the 2-D modeling used in the 

BEM measurement model, this is equivalently crack length. It is also known that the 

peak-to-peak separation is proportional to the liftoff and the spreading out of the dipole 

signal is related to the spatial distribution of the crack. Since crack shape affects both the 

amplitude and the shape of the magnetic field, then this pseudo 3-D approach would be a 

better approximation to a real crack that has shape that varies with depth. 

Ideal cracks versus real cracks and slots 

The BEM measurement model assumes an ideal, perfectly insulating, infinitely 

thin crack. This assumption will lead to differences between the model and 

measurements made on samples containing either wide cracks (slots) or real fatigue 

cracks. Most fabricated test samples used in our laboratory use slots, made by a saw or 

electrodischarge machining (EDM), to simulate cracks. A combination of a drilled hole 

with an EDM slot is an approximation to a crack emanating from an aircraft fastener 
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hole. This is useful in preliminary analyses, especially for development of NDE 

techniques.   Fabrication of test samples made this way is simple and controllable, 

making it easy to build a test set representing the range of conditions that are of interest. 

But, measurements with NDE instruments [18, 19] have shown that the instrument 

response from a slot is not necessarily the same as that from a fatigue crack of the same 

size and geometry. Figure 5.3 schematically shows some of the possible variations, each 

possibly resulting in a different instrument response. 

//// 77Z~      ////i [777"      ///A///        ////\/// 

Figure 5.3 Slot profiles: (a) wide slot (b) narrow slot (c) ideal crack (d) real crack 

More realistic crack specimen fabrication can be accomplished as described in [20]: 

a) Introduce a controlled starter notch (usually by EDM) into the specimen. 

b) Promote a fatigue crack from the notch by cyclically fatigue loading the specimen 

with axial and/or bending loads. 

c) Remove starter notch to retain only the sharp fatigue crack and to produce a desired 

specimen surface finish. 

However, this is a time intensive process and it is difficult to control as to produce 

"standard" cracks of various lengths used in system characterization. 
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The BEM measurement model simulates a closed crack that is electrically 

insulated along the entire length. We have shown that it provides a reasonable 

approximation to a thin slot for liftoffs appropriate for SQUIDs commonly used in the 

laboratory (> 3 mm). However, for real fatigue cracks, it is possible that crack closure 

may cause electrical conductivity across parts of the crack. Probability of detection will 

be strongly dependent on the effects of crack closure since, if current is flowing through 

the crack instead of around it, the signal (which is proportional to the perturbation of the 

current) will be greatly reduced. It is not yet understood how much crack closure effects 

current flow since it is likely that the oxide layers that form on the crack surfaces will act 

as an electrical insulator and so, only those contact points where the oxide layer is not 

present will provide conductive paths. 

Additional current paths 

The POD analysis has been based on simulated measurements of a crack 

emanating from a fastener hole and has completely ignored the effects of the fastener 

itself. This is most likely one of the larger sources of discrepancy present between the 

model and real measurement. Since most fatigue cracks start under the fastener head, 

early detection is difficult and usually the crack has to propagate beyond the fastener 

head before detection occurs. Another critical issue is that of contact between the 

fastener and the hole sides, which can create numerous current flow paths across and 

through the fastener. These currents may be too difficult to model directly and their 

associated uncertainty might have to be represented through a sample-related noise 

distribution. This will probably have to be determined experimentally by examining 
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samples with holes alone and with fasteners inserted to quantify the effect on the 

magnetic signal. 

Geometry factors 

Current can also be greatly affected by the geometry of the surrounding structure, 

particularly edges such as lap joint seams. Figure 5.4 is a detail from Fig. 3.4 showing 

that edges can produce a large signal amplitude that can make flaw detection difficult, 

especially if the flaw is located near an edge. 

Edge 
Signal 

Flaw Signal 
Experiment 

- BEM Model 

Figure 5.4 Detail from Fig. 3.4 pointing out edge and flaw signals 

Other examples of edge signals can be seen in previously shown figures (Fig. 1.6 (b) and 

Fig. 3.2). Image processing techniques can partially remove the background slope due to 

these edges but it is still difficult to extract the signal from a flaw that is near an edge. 

Edges and other geometrical factors {e.g., structural support members) affect the ability 

of the SQUID to detect a crack and these have not been taken into account in this POD 

analysis. 
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Factors That May Increase POD Capability 

The peak-to-peak value of the magnetic dipolar map is the present definition of 

"signal" used in these analyses. Peak-to-peak amplitude is a very limited use of the 

information available in the mapping since it reduces the entire 2-D image to a single 

value. It is the opinion of the author that image features (e.g., shape and asymmetry) of 

the 2-D magnetic field map are just as important as the peak-to-peak signal amplitude in 

the detection and characterization of cracks, especially near fastener holes. For example, 

if we look at the magnetic map centerline profiles for various ideal geometries that have 

the same "cross sectional length" perpendicular to the current injection direction, we can 

see that using only peak-to-peak information for current perpendicular to the crack can 

lead to detection problems. The left-hand side of Fig. 5.5 shows the profiles for the 

current transverse to the crack at three different liftoffs for a 9 mm diameter hole, a 5 mm 

hole with a 4 mm crack, and a 9 mm crack. The signal values for each of the traces are 

plotted on the same scale and represent a SQUID system using 3 mm pickup/balance 

coils with a 3 cm baseline. From this information, all the profiles look the same in that 

they are dipolar with a mostly symmetrical shape. Based on peak-to-peak amplitude in a 

single direction, we can not distinguish between a crack alone, hole alone, or a hole-with- 

crack combination unless a baseline signal amplitude can be established as was done 

earlier in this POD analysis using the signal associated with a 5 mm hole alone. 

However, this approach would not work here since the 5 mm hole is not a constant 

feature in all three geometries. 

The rotating current schemes of [30] take advantage of the differing two- 

dimensional structure of these three geometries. By rotating the current direction, the 
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signals associated with a crack will go through a maximum (when the current is 

perpendicular to the crack) and a minimum (when the current is parallel to the crack). A 

hole alone will not show this cyclic behavior (unless it is out-of-round). On the right- 

hand side of Fig. 5.5 are the corresponding profiles when the current is parallel to the 

crack showing the 9 mm crack having a flatline (zero signal) and the 5 mm hole with a 4 

mm crack having a signal corresponding to a 5 mm hole alone and the 9 mm hole is 

unchanged. In this way, the three geometries could be distinguished by a measure of 

their peak-to-peak difference at the two current injection directions, with the crack alone 

being the largest, the hole-with-crack combination the next largest, and the hole alone 

having no difference. Real fatigue cracks will have some small signal for current injected 

parallel to the crack (versus zero signal for the ideal cracks of Fig. 5.5) but will still show 

the same maximum/minimum behavior as a function of current injection direction (the 

signal difference will just be smaller than the ideal crack case). 

It may also be possible to distinguish between these three cases using a single 

current direction. By looking at the contour maps for the three cases, it can be seen that it 

may be possible to use dipole extrema eccentricity as an identification procedure. Figure 

5.6 shows the contour maps for these cases with the bidirectional arrows in the upper 

figure representing the measures related to extrema eccentricity, defined here as 

"*.- (s-» 

The hole-with-crack contour plot has different eccentricities for the left and right extrema 

of the dipole. For the hole alone and the crack alone, there is left-right symmetry but the 
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Figure 5.6 Contour plots showing extrema eccentricity 

eccentricity is different between the two, ehok < ecrack. This is due to the hole having 

more spatial (physical) extent than the crack in the be direction causing the signal to be 

more stretched out in comparison. Since this feature is strongly a function of liftoff, it is 

difficult to determine a quantitative measure without further analysis. 

SQUID NDE systems will have to use asymmetry measures (which includes the 

rotating current direction technique) for crack detection, especially for cracks originating 

from fastener holes. If the asymmetry technique is used only to find the maximum and 

minimum of the signal, then POD may still be determined primarily from peak-to-peak 

amplitudes. However, if additional measures of asymmetry (e.g., eccentricity or other 

87 



shape factors) are to be used, then POD analyses must incorporate these measures into 

the standard peak-to-peak analysis to reflect the true capability of the system. This is an 

important topic to be addressed for future development of SQUID POD methodologies. 

Other Comments and Suggestions 

The BEM measurement model has already been used in other experimental work 

involving validation [33, 34] and calibration techniques [35]. The model is just now 

beginning to be used for POD work, which was what it was originally designed for. The 

measurement model can provide a fast and accurate way to simulate scans over samples 

containing injected current, making it a very useful sensitivity analysis tool. However, if 

the model is to be used to calculate realistic probability of detection values for SQUID 

systems, more work has to be done to identify those sources of noise which are causing 

the large discrepancy between experimental measurements on real fatigue cracks and the 

detection capability determined by this analysis. Some of the possible sources of this 

noise have been discussed but no work has been done as of yet to quantify their effects. 

Also, the effect of the crack tip, which was a significant model formulation issue, 

seems to be somewhat washed out at the liftoffs presently used (> 3 mm). It may be that 

the usefulness of the BEM measurement model may not be fully realized until the liftoffs 

are reduced enough to see the large magnetic fields in proximity of the crack tip. At 

smaller liftoffs (<1 mm), using less accurate models (e.g., superposition) will lead to very 

large errors. Significant improvements in reducing liftoff, requiring a very short distance 

between superconducting and room temperatures, are more likely to be achieved in high- 
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temperature SQUID systems. The measurement model and the POD approach are readily 

applicable to these types of systems as well. 

Some additional items to consider for future development include: 

- automate the entire process: currently, the determination of POD requires several 

individual computational steps and it should be possible to incorporate all of these 

into one overall program. 

- refine the Monte Carlo simulation: optimize the process since, as more uncertainty 

factors are included in the sampling, computational time will increase tremendously. 

It may be possible to determine functional forms for the POD instead of using Monte 

Carlo methods but this will depend on the distributions associated with the added 

uncertainty factors. Also, we need to define how to compare POD curves generated 

from simulation to those generated from experimental measurements (e.g., relevance 

of lower confidence bound). 

- examine applicability to eddy-current inducer technique: since this is the proposed 

technique for NDE in the field, we need to determine how well the eddy currents 

produced by the inducer sheet can be modeled by the dc-current injection of this 

model. 

- incorporate signal measures other than Bz peak-to-peak: most of the magnetic map 

information is not currently used (e.g., dipole shape characteristics). Probability of 

detection may be enhanced by additional measures derived from this unused 

information. This also leads into the use of vector magnetometers to measure Bx and 

By, which has yet to be addressed in POD determination. 
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APPENDIX A: 

GREEN'S FUNCTION FORMULATION 
OF LAPLACE'S EQUATION 
FOR ELECTROMAGNETIC 

CRACK DETECTION 



Green's Function Formulation of Laplace's Equation 
for Electromagnetic Crack Detection 

T. A. Cruse, A. P. Ewing, and J. P. Wikswo1 

1 Introduction 

The following note summarizes the development of a special Green's function for crack problems in 
potential theory. The formulation is for a single, straight crack contained within or intersecting a 
regular boundary. The formulation of the special Green's function was first derived for the elastic 
fracture mechanics problem. The current formulation is a subset of the elasticity problem and 
is formulated as a Hilbert problem using complex variables. The formulation is validated using 
boundary element modeling of the Mode III, pure (antiplane) shear fracture mechanics problem. 

The Green's function formulation is applied to modeling the magnetic field for the steady-state 
current flow through a two-dimensional plate with a plane crack. The BIE formulation is used to 
obtain the boundary integrals necessary to compute the normal component of the magnetic field for 
an arbitrary remote sensing location. The boundary integrals involve the tangential current flow on 
all boundaries including that for the crack. The explicit form for each of the two crack tip singularity 
terms is derived. 

2 Singular Potential and Green's Second Identity 

The field problem is that of Laplace's equation subject to mixed boundary conditions which may 
locally be Dirichlet or Neumann conditions. We will formulate a boundary integral equation (BIE) 
for this problem using a special fundamental solution that corresponds to a surface upon which the 
normal derivative of the solution is zero. All other surfaces will have user-specified values of the 
potential or its normal derivative. 

The field equations are for the unknown potential 4>(p) where p(x) is the Cartesian field point. 
The BIE will be formulated from a Green's identity using the fundamental solution of Laplace's 
equation and is denoted ip(p, q) where p, q are the field point and the singular point, respectively. 
When these points are taken to the boundary they will be denoted as upper-case points P, Q. Details 
supporting this note are given in [1]. 

The fundamental solution in two dimensions is given by real part of the complex logarithm 
function. Recall that a real part of a complex function is one-half of the function plus its complex 
conjugate. We can then write the logarithmic potential as the following real form. 

tp(p, q) = [log(z - c) + log(z - c)]/2 = 11 log(z - c) (1) 

where c = xp + iyp, z = xq + iyq and i = y/^-[. This fundamental solution satisfies the following 
singular, inhomogeneous form of Laplace's equation. 

V2ip{p,q) = 2TrV(p,q) (2) 

In this equation, V is the Dirac delta function, defined by the relations JRV(p,q)dV(q) = l(p) and 
V(p, q) = 0 so long as p ^ q. 

The integral equation formulation for potential theory derives from Green's second identity, 
written for the fundamental solution and the unknown potential function. 

JR [*(g)VV(P, q) ~ V>(p, q)V2H<l)} dV(q) = Js (V(Q)^p - *(p, 0)^|) dS[Q)      (3) 
XH. Fort Flowers Professor of Mechanical Engineering, Graduate Student, and A. B. Learned Professor of Physics, 

respectively 

91 



We now take 4>{q) to satisfy Laplace's equation V2cj) = 0 and replace the Laplacian of the fundamental 
solution by the Dirac function, as above. The result is an integral identity for the values of <f>{p) in 
terms of the totality of Dirichlet and Neumann data. 

**»-/.(««»W-«"<$)* (4) 

3    Boundary Integral Equation (BIE) 

The above identity cannot be used for a solution to the unknown potential without complete knowl- 
edge of the Dirichlet and Neumann boundary conditions. In general, one or the other of these two 
boundary conditions is specified on portions of the boundary. These mixed boundary conditions can 
be written as follows. 

<P(Q) = f(Q)  QtSD (5) 
d<t> 
dn 

= g{Q)   Q£SN (6) 
Q 

The total boundary S is given by the union of the Dirichlet boundary So and the Neumann boundary 
SN- 

The Laplacian operator is elliptic. This property endows the potential <f>(p) with considerable 
smoothness. The boundary values of 4>{Q) will be taken to be continuous in what follows. While 
the derivatives of the potential are also continuous on the interior, the normal derivative can be 
discontinuous on the surface. That fact is not central, however, to the following developments. 

Under these circumstances, the potential <j){Q) and its normal derivatives are continuous at the 
boundary. We can now subtract the boundary value of the potential at an arbitrary boundary point 
P from the boundary integral, and add it back in as follows. 

*m = jw> - wi^*«»+«P, jt M«,«) - jf ,fe Q)?mdS{Q) (7, 
The free term multiplying the potential at P can be integrated in closed form for all interior points 
p and the result is independent of the actual surface shape, so long as the surface is closed. 

/.W**«-* (8) 
We now obtain an equivalent Green's identity for which all integrals are continuous as p —» P. 

**\m - *(p)\ = JMQ) - w)]^p - //M)f^s(Q) (9) 
Green's identity can now be taken to the boundary, letting p —> P, in a smooth manner. The 

resulting boundary integral equation (BIE) for the potential theory formulation is given by the 
following relationship. 

°-/;«<»-™W-/^™$§H (10) 

The BIE is a constraint equation that holds for all harmonic functions. The defined constraint is 
between the Dirichlet and Neumann boundary conditions for the problem. All well-posed problems 
can be reduced to a well-defined integral equation which can be solved for all unknown boundary 
conditions. Following the solution of the BIE, one can substitute the totality of the derived Dirichlet 
and Neumann boundary data into the Green's identity for the interior potential function. This 
constitutes the full solution of the boundary value potential theory problem. 
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4    Green's Function for Crack Problems 

We now seek to derive the special fundamental solution for two dimensional crack problems. For 
the EM problems we will be using the potential function to represent the current potential for the 
steady-state problem. The derivative of the potential normal to the crack surface will be zero, for 
the assumption of a perfectly insulating crack surface. We seek a Green's function for the resulting 
Neumann potential problem of the insulating crack. That is, we seek a function whose derivative 
normal to the plane crack is zero at the crack surfaces. In the steady-state EM problem, the crack 
is taken to be an infinitely thin insulating surface. We define the surface to be T. Further, we will 
take T to be a single straight line parallel to the x-axis in the two dimensional problem. The source 
of the derivation we will use is [2], [3]. 

The new fundamental solution or Green's function is the combination of two functions. The 
first is the same logarithmic potential we started with; the second is a function which will cancel 
the values of the y-derivative of the logarithmic potential — at the crack surface. That is, the 
y-derivative of the sum of the two potentials is to be zero at the crack surface. We achieve this by 
finding the solution to the boundary value problem for the second potential problem that cancels 
the values of the y-derivative of the logarithmic potential, at the crack. 

The problem whose solution we now seek is called a Hubert problem [4, 5]. The formulation 
consists of finding the potential for an infinite region with a crack surface T on which we have 
specified boundary conditions. The boundary conditions for the Hilbert problem are to be the 
Neumann conditions involving the y-derivative of the log-potential at the crack. For superposition, 
the resulting derivative is the negative of the boundary values for the Hilbert problem and are taken 
to be ß(t) for t G T. 

We now derive the complex potential h(z) whose boundary values on T are ß(t). The boundary 
values for our problem are taken to be the same on both the upper and lower side of the crack T. 

h+(t) = ß(t) 

h-{t) = ß{t) (11) 

The following combinations of these boundary conditions hold for the Hilbert problem we have 
defined. The general solution allows the potential to be discontinuous at the surface V. 

h+{t)-h-{t) = 0 

h+{t) + h-(t) = 2ß(t) (12) 

The solution for this Hilbert problem is given as follows [2]. 

M,,--'     /5W^E5«+ 'W, (l3> 
■K\lzi - a2 JT t- Z y/z2 - a2 

In this equation, the integral is performed on the positive side of the crack, from the left hand 
end t = — a to the right hand end t = +a. The function of integration, P(z) is a positive power 
polynomial which can be determined by the behavior of h{z) at infinity. These conditions require 
that P{z) = 0. A discussion of the complex variable integration method for this integral is given in 
[5]. In what follows, we will compute only the real part of this integral. 

We can now take the boundary values ß(t) to be such that they cancel the boundary conditions 
of the y-derivatives of the logarithmic fundamental solution. This superposition of two functions 
gives us a new fundamental solution whose y-derivative is zero on the crack surfaces. Recalling the 
fundamental solution to be given by the following expression 

1>(z,c)    =   Tl[log{z-c)} 

=    ^[\og(z-c) + \og(z-c)} (14) 
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we can derive the y-derivative of the logarithmic potential at the crack, which is parallel to the x- 
axis. We will take the negative of the derivative as our boundary conditions for the Hilbert problem. 
The final solution we seek will have zero y-derivative at the crack by adding the Hilbert problem 
potential to the fundamental solution potential. 

dip(z, c) 
dy x — c x — c 

-ß(x) (15) 

It is seen that the boundary condition is a real function on the crack surface T. 
The Green's function is to be a real function with the boundary conditions satisfying the values 

ß(x); we will take this real function to be given by G(p, q; a). The Hilbert problem potential is then 
given by the following integral. 

G(p,q;a) = -—n 
yR- ■ - a2 Jr 

V^P 
t — c     t — c 

dt (16) 

The above integrals for the Green's function terms exist in closed form, as can be seen in [5]. We 
need only the real part for each of the above terms, as in [3], given as follows 

G(p,q;a)    =    TZ[h(z)} 

=    -2n 

where the integral I(z) is defined below 
Vz 

i{z) - He)  i(z) - m 
z — c 

I{z) -I f+a 

~ * J-a 
y/a2 -t2 

dt V z2 — a2 — 

(17) 

(18) 

for all z except along the crack where I(z) has the boundary values 

/+(*)    =    \iy/j* 

I-(t)    = iVt2 a2 -1 ter (19) 

The complex potential h(z, c) has been used to find a Hilbert problem solution for the boundary 
data derived from the y-derivatives of the fundamental solution. These terms will be used for the 
evaluation of the BIE terms involving the y-derivative. 

The BIE also requires that we have the fundamental solution potential, and not just its y- 
derivative. Therefore, we have to integrate the function h{z) with respect to z/i to have the function 
whose boundary conditions on the crack we have just used. The integration result is given as follows 
[6] 

G(p,q;a)=Tl   |  f h(z,c)dz 

where J(z, c) is given by the following result 

--TZ [J {z, c; a) - J(z,c; a)} (20) 

such that 

J(z, c; a) = log   2 

dz ' 

\Jz2 — a2y/c2 — a2 + cz 

(z + sjz2 - a2) (c + yjc2 - a2) 

I(z)-I(c) 

(21) 

(22) 
(z — c)\/z2 — a2 

We now have the two Hilbert problem forms that are needed to modify the BIE for the crack 
problem. The new potential J(z, c; a) depends on both field points as well as the crack size. The 
crack for this formulation is limited to a straight crack along the real axis with its center at the 
origin. For computational purposes, we use a simple shift and rotation of the coordinate axes to put 
the crack at any user-defined location and orientation relative to the physical geometry. 
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5    BIE with the Special Green's Function 

The final formulation for the crack problem is obtained by taking the sum of the original fundamental 
solution with the solution of the Hilbert problem. This modified fundamental solution which satisfies 
the insulated condition on the crack surface is denoted a Green's function for the crack. That is, 
the Green's function is an harmonic function containing the fundamental singularity property and it 
satisfies the boundary conditions on the crack. This fundamental solution is denoted by ty(p, q) and 
is given by the real part (denoted by the 1Z notation) of the two terms. The original fundamental 
solution term has been normalized by dividing it by 2n. 

V{p,q;a) TZ\og(z - c) - -TZ{J(z, c; a) - J(z, c; a)} 
_1_ 
2^ 

—11 [log(z - c) + log(z - c) - J(z, c; a) + J(z, c; a)} (23) 

The modified fundamental solution, or Green's function, for the crack is shown containing the crack 
length as a parameter. This is to reinforce that the presence of the crack is now embedded in the 
fundamental solution terms. The Green's function derivative in the normal direction at the surface 
point Q will also be needed for the BIE formulation. That result is now given. 

99(p,Q;a) 
dn - f* 'nx 4- iny 

z — c 
n, — ir 

+     _     _ 
z — c 

ly      (nx+iny) (I(z) - 1(c)      I(z) - I(c)\ 

\fz2-a2   \     z-c               z-c     ) 

2TT 

nx +iny' 
z — c A-n 

Unx + iny) fl(z)-l{c)     I(z)-I(c)\] 

[ Vz2 - a2   \     z-c               z-c     )\ 
(24) 

The BIE identity can now be written on the total of the regular surface and the crack surface. 

„ . /slW)_w,^^_//(P,C;0)«l(iSW) + 

J[<KQ)-4>{P)] 
d*(P,Q;a) 

dn(Q) 
Jv(P,Q;a) d<KQ) 

dn(Q) 
dS(Q) (25) 

The effect of the special Green's function formulation is now seen. Both integrals on the crack 
surface T are zero. The first is zero due to the Green's function having zero normal derivative on the 
crack, and the second due to the insulating boundary conditions for the unknown potential function. 

Thus, we take as the final BIE for the insulated crack potential theory problem to be the following 
equation. 

,d*(P,Q;a)       /•„,,„.    MQ) 
o = J[<KQ)-<KP)]- dn{Q) //<™°0*«> (26) 

The BIE models the crack through the Green's function, and not through the boundary of the 
crack. The form that has been derived places the crack at the origin and oriented along the z-axis. 
However, the existing computer program allows the user to specify the global location of the crack 
and its orientation. The crack can be contained within the region or can intersect one or more 
physical surfaces. Again, the BIE code has been written to accept these cases. 

Thus, the BIE for the insulated crack problem contains only the uncracked surface in the BIE. 
Application of the special Green's function to the elasticity problem has demonstrated the very 
high accuracy of this formulation for crack problems, as in [6]. Further, applications of the special 
Green's function formulation have demonstrated a high degree of accuracy for cracks at holes and 
other stress concentrating geometries [7]. 
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6    Interior Derivatives of the Potential 

The interior potential for the Green's function formulation is given by the identity 

6n(Q) 
- J 9(j>,Q;a) 

d<p 

dn 
dS{Q) (27) 

The derivatives in the x-direction and the y-direction of the interior potential are needed for the 
full electromagnetic field formulation. 

dm 
d(xc,yc) 

= lsm) 
dn(Q)d(xc,yc L d$(p, Q; a) d£ 

s   9{xc,yc)    dn 
dS{Q) (28) 

The derivative at the point c of the kernels given in Eq. 23 and Eq. 24 are required in order to 
compute the gradient of the interior potential. These kernel derivatives are given as follows. 

a<P(p,Q;q) 
d(xc, yc) 

The identity 

■4* 2vr 

4n 

dJ_ 
dc 

(1,0 
z — c 

(1.0 
Vc ■v/c2 — a 

1(c) -I(z) I(z)-I(c) 

(29) 

(30) 
(c — z)\f<? - a2      (z — c)\/c2 — a2 

has been applied using the symmetry of J(z, c; a) with respect to z, c. 
The derivative at c of the normal derivative kernel function in Eq. 24 is given in the following 

set of terms. 

d2*(p,Q;a) 
dnd{xc,yc) ♦£« 

(nx +iny)(l,i) 

+ 

_1 
47T 

_1 

47r' 

(z-c)2 

(nx + iny)(l,i) f d I{z) - 1(c) 

Sz dc 
(nx+iny)(l,-i) ( d I(z) - 1(c) 

\/z2 - a2 

fdl(z)-l(c)\ 
\dc     z-c     ) 

The remaining derivatives with respect to z above are given in the following result. 

d Hz)-He) 
dc     z — c 

1(c) + I(z) 

(31) 

(32) 
(z - c)Vc2 - a2  '  (z-c)2 

7    Crack Tip Field Intensity Factory 

One of the key parameters in crack problems is the so-called crack tip intensity factor (CIF = K) 
derived from the derivatives of the potential at each crack tip. The CIF is given by the following 
limit 

K{x,y)=Urna^(cTa-)^^- (33) 

for z ^ c. The intensity factor can be derived for any direction of approach to either of the crack 
tips. For convenience, we will take the point c = ±(a + r) where the real variable r is the distance 
from the crack tips and is taken to be along the x-axis. Thus, c = c for the limiting processes. The 
CIF is then given by the following integral identity from Eq. 4. 

d2np,Q) K, (x,y) ±a = 11« 
dd>(p) .  

lim V2Trr„yF{ = lim V2^ 
d(x,y) r-»o L(m  d*{p,Q) 84>(Q)\ 

d(x,y)dn(Q)       8(x,y)   dn(Q)) 
dS     (34) 
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Carrying out the limits on the two kernel functions, one finds that the derivative dcfi/dx is zero 
ahead of the crack. That is, the gradient of the flux parallel to the crack is zero for potential theory. 
The singular term is contained solely in d(f>/dy, the gradient transverse to the crack, ahead of the 
crack. One can also find from a study of the kernels that the gradients for points on the crack 
surfaces are swapped and the sign changed. Thus, for the top crack surface d<j>/dx is singular with 
the CIF equal to minus that of the approach ahead of the crack, output in the code as K. The 
derivative d<f)/dy is, by the Green's function, zero along the crack surfaces. 

The two kernels that are needed in order to compute K for the limit using points ahead of the 
crack are given as follows, using the right hand crack tip c = +a. The code allows the negative crack 
tip computation as well. 

9
2
*(P,Q) i{nx + iny 

_(z — a)yz^ 

47ra 
n i[I(z) - 1(a)] 

z — a 

(35) 

(36) 

8    Boundary Element Algorithm 

8.1    Quadratic Straight Line Segments 
The boundary element method (BEM) replaces the actual boundary with an approximate boundary 
discretized as a finite set of simple elements. The current algorithm uses straight line segments 
in order that we can implement analytical integrations of the kernels in Eq. 23 and Eq. 24. The 
boundary functions are then represented by quadratic interpolations over each boundary segment. 
Continuity of the potential is enforced, but not continuity of the flux, between the boundary elements. 
The analytical integrations of the two kernels times quadratic polynomial interpolations of the 
boundary data are computed on an element-by-element basis. 

The quadratic boundary data model replaces each of the boundary functions with the following 
general form of interpolative. 

F(z) = A0 + Axz + A2z
2 (37) 

The current BEM algorithm is based on boundary elements defined by end nodes and mid-length 
nodes for each boundary element, AS, = AzjB. The general form in Eq. 37 can be replaced by a 
form specifically tailored to the element-by-element integration for the BEM algorithm. We define 
the endpoint nodal values of each interpolative by Fi, F2 and the midside nodal value by F3. The 
general quadratic interpolative is then given by 

F(z)    = 
F2 

-ZQ 
Fi 

-4 

Az 

Fi+F2 

Az 
F2 F,+F2  2 

Z  +  *      /   A        NO      ZQ 
(A*)2 

(Az)2 ^+2w*2+Fs 1-4 
(Az) 

+ i 
,JQZ_ 
\Azf -4 

(Az) 
(38) 

The midside node for each segment is denoted as ZQ. 

8.2    Integration of the Boundary Terms 
The integrals for each boundary element, with the complex variables used herein, are converted 
to complex integrals with respect to dz = BdS where B = inx — ny. It can be noted that A = 
nx + iny = —iB in Eq. 24. The boundary integrals are given symbolically in the following forms. 

I{c) = jsF{z) 
.   d%\ dz 

(39) 

97 



Substitution of the quadratic interpolative from Eq. 38 into the above integral results in the following 
forms of boundary element terms for the end-point nodes (N = 1,2) and the midside node (N = 3). 

I{c)   =   A/0 - (-l)N(Ah - AI2) - A/3 + A/4  for N ± 3 

=   AI5 + A J6 + Ah for N = 3 (40) 

The terms J0 and h result from integration of the kernel functions times the constant interpolation 
terms in Eq. 38. The terms J2 and I3 are for the linear terms in the interpolation, and the term J4 

is for the quadratic interpolation of the kernels. The terms h and I2 change sign for the two end 
nodes in Eq. 38. In the case of the integrals relative to the midside node, the term I5 is for the 
constant term in the interpolative, the term Ie is for the linear term, and I7 is for the quadratic 
term. 

The kernel functions for the integrations are repeated in a convenient form below. 

*{p,q-,a)    =    —R[2log(z-c)-J(z,c;a) + J(z,c;a)} 

dV(p,q;a) 
dn 47T 

n nx+inv .      dJ(z,c)      . .    sdJ(z,c) 
2    v_/ ~ K + my)     ;;     + (nx + iny)     v     ; 

dz 8z 
(41) 

Substituting the identity dz = BdS in the above equation, and integrating over the segment AS*, 
we have the following integrals to evaluate. Since we are using straight line segments in the BEM 
algorithm, the term B is a constant over each segment. 

I    (l,z,z2)V(p,q;a)(p,q;a)dS    =    -±-  f   (l,z, z2) [2 log(* - c) - J(z,c; a) + J(z, c; a)] dz 
JASi 47r-D JAz 

[      (1|Z> ,2)^1^,5 
JASi dn rjj-^ z,z2) 

dJ(z,c)      dJ(z,c) 
dz dz 

dz (42) 

The final results are obtained by taking only the real part of the above integrals. 
We will first consider the integrals of the potentials of the uncracked body. The integrated 

kernel functions are labeled AU0, ATQ, AUx, etc., referring to the constant, linear, and quadratic 
interpolatives. The following summarizes those integration results. 

2irAU0    = 

2nAT0    = 

2-KAU-i.    = 

-[*(log*-l)]|? 

-i\ogz\\ 

2B *20og*-£) 

2TTATI    =    -i(z2-zi) 

2nAU2    = 

27rAT2    = 

3ß 
z3 log z 

(43) 

The following terms are the integrals of the special Green's function terms. The integrations will be 
given in terms of the source point c as the conjugate results are obtained by simple substitution of 
c for c. 

4TTBAU0    =    -{(z - c)J(z,c;a)-z+ y/z2 - a? + 1(c)\og(z + y/z2 - a2)]|? + [... (z,c)} 

47rATo    =    i[J(z, c; a) - J(z, c; a)] 
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4-KBAUX    =   - 

4nBAU2 

[z — c 
J(z, c; a) + cU0 -^(-z + \A2 - a2 + 1(c) \og(z + y/z2 - a2))- 

~z2 + )^/c2-a2z2 - a2 - icy^2^2 + -^Jz^tf + 

2 

+ ^-log(z+y/z^2)-j + [•••(*, c)] 

4TTATI    =    i[cJ(z, c;a) + z- \/z2 - a2 - 1(c) log(z + v^2 - a2)]|? -*[••■ (2, c)] 

-J(^c) 
2       /"2z3 /(z)-J(c) 

\/22 — a2(z — c) 
+ l---(z,-c)) 

4TTAT2    =    i[z2J(z,c;a)\2-2AU1(z,c)]-i[z2J(z,c;a)\21-2AU1(z,c)} (44) 

Again, we recall that the BEM equations are obtained by taking only the real part of the above 
integration results. A linear system of equations is generated by the BEM algorithm. The system 
of equations is automatically swapped during assembly such that the unknown boundary conditions 
appear in a single vector. The system of equations is square so long as there is only one unknown 
flux value at each boundary node. 

8.3    Integration of the Interior Gradient Terms 

The previous integrations are used to compute the boundary integrals for the BIE as well as for 
the evaluation of the interior potential function. No we consider the evaluation of the derivatives of 
the interior potential function. We will take the gradient of the potential at an arbitrary interior 
point. The integrations of the kernels in Eq. 29 and 31 will again be broken up into the terms for 
the uncracked potential and the terms for the special Green's function. The integration results for 
the interpolated boundary functions times the kernels will again be denoted by UQ, TO, U\, etc. 

The uncracked potential function integrals are given as follows. 

AC/(o,i,2) = /     (1,; 
JASi 

d^!(p,Q;a)dz 
d(xc, yc)   B 

(45) 

2ITU0   = 

271-1/!     = 

2wU2    =    - 

(1,0 
B 

(i,0 
B   ' 

(i,0 
2B ' 

logz|? 

,2|2 (46) 

The above three results use the fact that the uncracked potential can be integrated from each source 
point as c = 0 without loss of generality. 

2nT0    = 

2TTTI    = 

2nT2    = 

t(l,0 

-i(l,01ogz|i 
-i(l,i)z\2 (47) 

The following results are the integrals of the special Green's function terms, using the same 
notation as above for the terms in c; the conjugate functions which must be combined with the 
terms below are of the same form with c substituted for c. The coefficient (l,i) is also conjugated 
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to (1,-i). 

4-rrBUo    = 

4TTSC/I    = 

-(1,0 (, - c)^£) _ J{z, C) + °M log{z + y^z^) dc dc + 

+(i,-»)[•■■(«, «01 

-(i,0 

1 
—cJ(z, c) + c{z — C 

dc 

dJ(z, c) 
dc -z + y/z2 - a2 + /(c) log(z + \/z2 - a2) 

c d/(c) 
2   dc 

\og{z + y/z2 - a2) + 
2v/c" ^ ^ 

4ITBU2    = 

where 
Ii = [{z - c)J(z,c)-z+ Vz2 - a2 + /(c)log(* + Vz2 - a2)] 

+ (l,-0[---(^,c)l 

(48) 

(49) 

^  ^ .,.  .x dJ(z,c) 
47TT0    =    -«(1,0 

dc 

-«'(1,0 / c-s/x2 — a2 

Vc2 - a2V-22 - a2 +CZ - a2 [ Vc2 - a2 + z + i(l,-i)[...(z,c)] 

47rTi    = 

47rT2    = 

-t(l,t) J(z, c) + c 
dJ(z,c)     dl(c) 

dc dc 
log(z + \/z2 - a2) + *(1,-*)[•• •(«,£)] 

(50) 

8.4    Test Problem for Antiplane Shear Loaded Crack 

The test problem is the antiplane shear fracture mechanics problem. The antiplane shear problem is 
governed by Laplace's equation V2w(a;, y) for the equilibrium equation in terms of the displacement 
function w(x,y). The two shear stresses (denoted by TXZ and ryz where z is normal to the plane) 
correspond to the gradients of the potential in the x, y directions. Thus, the formulated Green's 
function corresponds to the exact solution for a large plate containing a central crack remotely 
loaded by the applied shear traction d<j>/dn. Equilibrium of the boundary tractions is given by the 
side-condition 

which must be satisfied for the solution to the BIE to exist. 
The test problem is a square plate containing a central crack of length 2a. The shear modulus 

fi is taken to be unity. The selected BEM model for this problem is given in Figure 1. The mesh 
consists of twenty-four boundary elements, as shown. The crack is taken to have an angle ß relative 
to the global rr-axis. The test problem is loaded by shear values of +5 units on the top surface, -5 
units on the bottom surface, and zero on the side surfaces. 

The validation solutions will be the shear stress intensity factor, referred to as the Mode III stress 
intensity factor in fracture analysis. The intensity factor for the infinite plate loaded by a constant 
Tyz = To at infinity is given by the following result [9]. 

Km = Toy/™ (52) 

In the case of the angled crack the solution is found in [10] to be given as follows. 

Km = T0 cos/?V7rä (53) 
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Figure 1: BEM Mesh for Antiplane Shear Validation Problem 
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The exact displacement field solution for points on the crack surfaces (corresponding to the values 
of the potential in the field) is given in [9] as 

r^-^'-d) <«> W(X eT,0)  _ To 

The singular stress terms near the crack tip are given as follows 

Km   .   6 
TSZ = —=sin- 

y2nr       2, 
Km        0 

Tyz = +7^=rCOS2 (55) 

The BEM validation solutions are for a normalized total plate width of W/2a = 100. The solution 
for the stress intensity factor is judged to be equivalent to that of the infinite crack. The BEM code 
reproduces the exact solution for the stress intensity factor, the gradient along the crack, and the 
displacement of the crack. The accuracy relative to the above analytical solutions for the infinite 
body is 0.004%, and can be further decreased by increasing W/2a. The BEM code is therefore taken 
to be validated. 

9    Application to the Electromagnetic Problem 

The target problem is the prediction of the gradient of the three dimensional magnetic field created 
by steady current flow through a two dimensional plate containing one or two cracks coming from a 
hole. The electrical field problem in two dimensions is solved using the Green's function formulation 
of the previous sections. We then apply three dimensional potential theory to get the induced 
magnetic field normal to the plate. All three dimensional aspects of the current flow problem in the 
finite thickness plate are ignored and the two dimensional current flow is integrated over the finite 
thickness of the plate to get the three dimensional magnetic vector at a specified field location. The 
normal component of the magnetic field is detected at that location using a fine-scale magnetometer 
type of device. 

The following few equations summarize the application of the special Green's function to the 
problem of the electromagnetic (EM) field problem of steady current flow through a body with a 
crack. The surfaces will be assumed to be perfectly insulating except for the surfaces of current 
injection and removal. The conservation of charge is a side condition for this Neumann problem. 
The following derivations are based on the equations and definitions in [8]. 

The vector electrical field for the steady-electrical conduction problem E(q) is taken to be the 
negative gradient of a harmonic function. 

E(q) = -Wfo) (56) 

The current vector J(q) is scaled from the electrical field by the conductivity a which is taken to be 
a constant for the body. 

J(q) = aE(q) (57) 

The steady current flow problem means that the electrostatic potential V(q) is harmonic, V2V = 0. 
The boundary conditions for the conductor are given in terms of the current flow density across 

the boundary defined by its outward normal n unit vector. 

dV 
J(Q) ■ HQ) = -<r-j^ = cg{Q) (58) 
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For insulated portions of the boundary, g(Q) = 0. Thus, we have a Neumann problem to solve with 
the BIE, for the potential V. The BIE for this problem is given below. 

Js[V(Q) - V(P)]d*^a)dS(Q) = Js*(P,Q;a)g(Q)dS{Q) (59) 

The physical interpretation of the requirement for the solvability of this Fredholm equation of the 
First Kind is that the total current flow is conserved. When we account for the fact that parts of 
the regular boundary are also insulated, we get the final form of the EM-BIE for our application. 

J[V(Q) - V(P))m™'a)dS(Q) = Js   V(P,Q;a)g(Q)dS(Q) (60) 

The solution of the EM-BIE is by the use of boundary element modeling of the surface and the 
imposition of boundary data interpolatives for each boundary element. The EM-BIE code is based 
on the algorithm in [6] except that we now use quadratic variations for all boundary data, straight- 
line boundary elements, and exact integration of the boundary element terms. 

The vector magnetic field B at an arbitrary point in space but caused by the steady current is 
derived according to the law of Biot-Savart [8]. We will take the three dimensional field point for 
the determination of the magnetic field as the point c(x). The magnetic field is given as the curl 
of the current field divided by the distance between the coil point and the integration point. The 
result, written for the three dimensional problem, is given as follows. 

*v~u*'*{$>h* (6i) 

where no is the free space permeability constant. Note that the gradient is taken at the free-space 
point c and not the integration point q. The gradient could be taken outside of the integral and lead 
to a different potential formulation for the non-steady state solution. We will leave the gradient 
inside the integration for our developments. 

The result can also be written in terms of the electrical current potential V(q), which substitution 
is valid for the steady-state electromagnetic formulation, as given in Eq. 56. 

At this time we can expand the gradient operator as follows 

vc x lYjßf) = _y, x (Zßö) + v* *^(g) (63) 

However, the last term above is zero due to taking the curl of a gradient of a scalar field. We can 
then write the following form in terms of the derivatives at q. 

r{c,q)  ) 9     \ r(c,q) 
VcxPf^    =-V,x    -^i (64) 

The derivatives are now all at the point q and we can drop the notation of the derivative point. 
We now use Stokes' theorem to convert the volume integral into the equivalent surface integral, as 
follows. The form of Stoke's theorem for the current application is now given, 

[ VxFdV= InxFdS (65) 
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where n is the surface normal. The model problem is a plate with contours defined in the x-y plane 
and two parallel surfaces in the ^-direction. Thus, if we take the ^-component of the left-hand side 
of Eq. 65, the resulting surface integrals are on the two-dimensional contours for the plate being 
analyzed. It is this component of the gravity field that we wish to model. The second identity 
converts the cross-product term to the following dot-product term. 

e3 • (n x F)    -    (e3 x n) ■ F 

=   i-F (66) 

and thus 

I  e3 • (V x F)dV =it- FdS (67) 

Substituting the results from Eq. 62 and 63 into Eq. 67, we obtain the necessary boundary 
integrals for the B3 component of the magnetic field in terms of the current flow along the boundaries 
of the two-dimensional plate. 

The modeling approach that is to be used for the EM-applications is to be quasi-three dimen- 
sional. We take the current to be defined for two dimensional slices parallel to the surface of the 
plate. Each slice has a two dimensional surface and crack geometry, although the crack geometry 
can be changed for each layer to simulate a three dimensional crack. The quasi-three dimensional 
approach neglects flow components in the direction normal to the surface of the plate. This approx- 
imation may be valid if changes in the geometry in the direction normal to the plane of the plate 
are small. 

The tangent vector in the above magnetic field problem is now unique and is the vector tangent to 
the two dimensional surface which has been employed in the EM-BIE formulation. The tangential 
derivatives of the potential V at the boundary can therefore be determined from the EM-BIE 
solution, including points on the crack tip. Analytical derivation of the special Green's function to 
get the tangential derivatives is used to compute the singular current flow at the crack tip. However, 
the above form is still in three dimensional form and its integration will be discussed in the next 
section. 

VM •«-- -hjmm - np)]^^«+± /(^^W> m 
The magnetic field at c(x) is derived from a volume potential converted to the surface tangential 

current flow problem. If the current flow was truly two dimensional, the two dimensional result for 
the magnetic field would convert the above equation to the log(2 - c) form used for the fundamental 
solution. Clearly, the quasi-three dimensional approach contains the most critical three dimensional 
elements of the magnetic field problem and can probably serve well in the current application, is 
spite of the current flow approximations used. 

9.1    The Biot-Savart Integral 

The Biot-Savart law [11] is used to calculate the z-component of the magnetic field from the tangential 
derivative of the scalar potential, V. The integral from Eq. 68 is written again in the local coordinate 
system of the measurement device, as follows 
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pickup coil 

Figure 2: Integration geometry between pickup coil and boundary segment 

where h is the thickness of the plate. The BEM algorithm calculates dV/dt as a piecewise linear 
result since we are taking V(Q) to be represented as piecewise quadratic. Letting Vt = VF ■ i be the 
tangential component of the gradient of the scalar potential, we have for the line segment along the 
arc length s, where the surface is taken to have unit thickness (dS = 1 • ds). 

Vt(Q) = b1+b2s (71) 

This integration is done for all boundary elements except for the crack surface T. Substituting 
this Vt into the integral for Bz(c) gives the contribution to the magnetic field at point c due to all 
boundaries except for the crack surface, I\ 

Bz(c) 
Hocrh 

Atr 
f h+b2s 

Js r{c,Q) 
(72) 

To carry out the integration, the geometrical relations for r and s must be determined. 
From Figure 2 we can see that 

D 
cos 9 

D 

ds 

V*2 + P2 

rdO       Dd6 
(73) 

cosö      cos2 6 
s    =   £>tanö|^ =£>(tanö-tan0i) 

Therefore, for the boundaries other than the crack, the integral is now 

li0ah   f 6H-&2-D(tan0-tan0i) Dd6 
Bz(c)\s    =    - 

47T 

Hoah 
An 

fxoah 
Ait 

D/ cos 0 

Bi /  —a + b2 s cos 6 

Bi In [tan \\ + \ 

cos2e 
f   d6      ,  „ f sin0 

Js cos 0 Js cos^ 0 cos20 

b2D 

(74) 

+ 
COS0 

where Bi = b\ — b2Dtan9\. 
Since the surface S is divided into n segments, the summation of this equation - evaluated over 

each segment for which Vt is defined by a single linear equation (each defined by a different 6i and 

105 



62) - will determine Bz at the pickup coil. 

b2D 
COS0 

aw-j;-^ fthto (: + «)] + (75) 

The angles 61 and 62 correspond to the angles between the perpendicular D and each endpoint of 
the segment as the summation moves in a positive sense around the boundary (material on left). 

For points on the crack surface, the singular behavior of Vt at the crack tip requires special 
consideration. The complete analytic representation of Vt for crack problems is given by [12] 

Vt = -J}ß= + Hx) (76) 
vz  — a 

where fi(x) and f2(x) are analytic functions of the real position x on the crack and a is the crack 
half-length. 

The first term in Eq. 76 contains the discontinuity at the crack tip while the second term is 
needed to match far field (away from the crack) boundary conditions. On the crack surface, Eq. 76 
can be rewritten as 

vt\r    =    —f=-f=f= + Mx) 

-      l    ih{X)  +Mx) (77) 
y/R y/a + X 

=    -^iFiix) + f2(x) 

where R is the distance measured from the crack tip at x = a. For the region near the positive crack 
tip, the behavior of Vt is known to follow 

K+ ß 
v-7mAn2 (78) 

where K+ is the potential intensity factor (PIF) of the crack on the positive x-axis side. Note that 
at R = 0 (crack tip), Vt = 00. 

If there were a crack on the opposite side (negative x-direction) of the rivet, then there would 
be a corresponding Vt term proportional to K~. The sin function multiplier reflects a geometrical 
dependence of Vt on ß, the angle measured from the crack tip axis to the evaluation point (see 
Figure 1). For points on the upper surface of the crack, ß = it and the multiplier is a (+1). For 
points on the lower surface of the crack, ß = —n and the multiplier is a (-1). Therefore, combining 
Eq. 77 and Eq. 78, the value (real part only) of the term multiplying the singular term, Fi(x), can 
be expressed in terms of the PIF 

F^a) = ±^L - f2(a) (79) 
y/2-K 

Due to the singular behavior of Vt at the crack tip, numerical integration will be necessary to 
evaluate the magnetic field contribution of the crack. Values of Vt will be evaluated for the upper and 
lower crack surfaces using the BIE program and then the magnetic field will be calculated through 
a numerical integration of the previously stated Biot-Savart relation (Eq. 70). 

9.2    Numerical integration of the Biot-Savart integral 

Numerical integration over the crack is accomplished using discretization of the crack boundary into 
elements.  By utilizing a coordinate transformation, Vt can be expressed in terms of nodal values 
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crack-tip element 

S5 S4 S3 S2 Si 

quarter point crack tip 
regular element 

Figure 3: Crack divided into regular and quarter point (crack-tip) elements 

<P2(4) 

Figure 4: Quadratic interpolation functions for mapping the regular and crack tip elements into the 
intrinsic £-space 

and interpolation functions (or shape functions) [13] of an intrinsic coordinate £. Once mapped 
into £-space, Gaussian quadrature numerical integration can be used to evaluate the integral. The 
present formulation will use quadratic interpolation functions Nm(£) which requires three nodes per 
boundary element. 

The crack will be modeled using one crack-tip element containing the crack-tip node and one 
regular element, each element being defined by three nodes (see Figure 3). The regular element 
is a straight-forward use of the interpolation functions but the crack-tip element will require some 
modification to accommodate the singularity at the crack tip. The crack-tip element contains the 
crack tip node as its first node and the mapping uses the quarter-point formulation [13] to account 
for the inverse square-root singular behavior at the crack tip. The other regular element will use the 
general form of the shape functions to map them to £-space. 

The general form of the quadratic interpolation functions used to map the function to be inte- 
grated into the £-space are as follows; 

W(0 !«*■ i) 

(80) 

-1, 0,-1-1 and the parent The parent element along the £-axis with uniformly spaced nodes at £ 
shape functions are shown in Figure 4. 

The spatial coordinate transformation, s — s(£) maps the parent element ranging from £ = — 1 
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to £ = +1 onto each of the crack boundary elements. A set of three parent shape functions are 
created for each element. It is desirable that this mapping be one-to-one so that each point in the 
parent element maps onto one point in the real element. In particular, the boundary nodes of the 
parent element, £ = 1, must map onto the boundary nodes of the real element to ensure continuity 
at the interelement boundaries. For the quadratic element, the mapping takes the form: 

3 

*   =    £>tf*(0 (81) 

=      -^(1-0S1 + (1-£2)S2 + ^(1 + 0*3 

where si,s2, and S3 are the corresponding real-space nodal values of the variable being mapped from 
the real element to the parent element. It can be seen that this equation maps the parent nodes 
onto the real nodes: 

£    —    _i _> 5 = Sl 

£   =   0^s = s2 (82) 
£      =      +!_><; = s3 

Only the values of si,S2> and S3 for each element need to be changed for each mapping.  The 
coordinate transformation into £-space of the integral results in the following sum 

+1 
(83) f F(s)ds -> T [    Nk(Z)FkJ(8,Z)dt 

Jr fc=1 •/-! 

where Fk is the value of the function at the kth node and J(s, £) is the Jacobian of the mapping of 
the real surface onto the reference surface. 

JM = fr±^ak m 
The Jacobian can be written out explicitly for use with quadratic shape function as follows. 

J(s, 0=U- I) «1 - 2£s2 +U + is3) (85) 

For the regular element, the location of the second node is midway between the endpoint nodes of 
the element, s2 = (si + s3)/2, so the resulting mapping is 

s   =    -^(l-£)si + (l-S2)s2 + ^(1 + 0*3 (86) 

(1-Qs1 + (1 + Qs3 

2 

with the corresponding Jacobian 

For Si = 0 and S3 = L, the contribution to Bz of the regular element on the upper crack surface 
becomes 

«* - -^i:m> 
108 



+ "3(0 'Vt{S 

+ N3(0 

r{s) 

Vt(L) 
r{L) 

J{8,0d£ 

d£ 

This result can now be numerically integrated using regular Gaussian quadrature techniques [13]. 
For the crack-tip element on the upper crack surface, the standard mapping to £-space needs 

to be modified to accommodate the 1/y/s behavior of Vt(s) at the crack tip. In what follows, the 
crack tip point will be mapped at s = 0. The general approach will be to split the Vt(s) term into 
a singular term multiplied times a non-singular coefficient. The form of Vt(s) follows from Eq. 77. 

To map Vt(s) into £-space, the singular term will use an inverse mapping relation and the non- 
singular term will use the quadratic shape functions. To determine the inverse mapping relation, 
we start with the 1/y/s behavior which can be represented by placing the midnode of the quadratic 
element at the quarter point location 

*2 = J(*3-«l) (90) 

Therefore, choosing si = 0, S2 = \L, S3 = L in Eq. 86, the quarter point mapping is given by 
the following result 

S = (l-£2)| + ^(l + 0£ (91) 

(92) 

which has a con ■esponding inverse mapping given as follows. 

i = -i+V§ 
The Jacobian J is given by 

J 
ds 

= d£ 
= -*M<1H 

§(1 + 0 

(93) 

Note that at the s = 0(£ = —1) point the Jacobian also equals zero. This characteristic is 
important when evaluating the integral of the mapped function. The 1/y/s term is represented in 
£-space by solving for 1/y/s in terms of £ in Eq. 92 

(94) 
v^      y/L{i +1) 

Therfore, the Bz contribution due to the crack-tip element on the upper crack surface is as follows 

ß2|r = .Mü/Md, 
47T   J   r(s) 

op firm)* (»j 
4TT   VO   y/s \ r{s) 
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Note that as £ —> -1 the singular term (f + 1 in denominator) goes to infinity but is canceled 
by the Jacobian term (f + 1 in numerator) going to zero, thereby making the overall function well 
behaved in the mapped space. All values of F, r, and s are known except for F at the crack tip node 
which has the singularity. But at the crack tip, the value of the function is the PIF(Ä"+) 

All boundaries are now taken care of and the following section summarizes the experimental valida- 
tion of the measurement model based on this development. 

9.3    Experimental Validation 

A measurement model has been developed using this BIE/EM formulation. The program simulates 
the scanning of a Superconducting Quantum Interference Device (SQUID) magnetometer [14] over a 
sample containing a crack. The SQUID magnetometer uses small pickup coils to sense magnetic field 
above the sample. Injecting a uniform DC-current in the sample causes the current to be parallel to 
the sample's surface under the pickup coil. The associated magnetic field is mostly tangential to the 
plate surface for scans located centrally and with small lift-off distances. A flaw in the specimen will 
perturb the current distribution and produce a vertical magnetic field component that can then be 
detected by the SQUID. When the SQUID is scanned two-dimensionally over the sample, a magnetic 
field map is produced, revealing a flaw signature that commonly has a dipolar shape (maximum and 
minimum peaks). 

As a measurement reference, electrodischarge machined (EDM) slots and saw cuts are used in 
calibrating NDE systems for detection of cracks. A combination of a drilled hole with an EDM slot 
is an approximation to a crack emanating from an aircraft fastener hole. Fabrication of test samples 
made this way is simple and controllable making it easy to build a test set representing the range 
of conditions that are of interest. But measurements with NDE instruments [15] have shown that 
the instrument response is not necessarily the same as that from a fatigue crack of the same size 
and geometry It is possible that crack closure may cause electrical conductivity across parts of the 
fatigue crack thus causing a reduced signal response over an electrically insulated slot. The BIE 
formulation used in the SQUID measurement model is for a closed crack (no width) but electrically 
insulated along the entire length. These issues must be taken into consideration when validating 
the model against experimental measurements on open cracks (i.e., slots) and actual fatigue cracks 
which may have closure. For this work, magnetic field map shape comparisons are the basis for 
validation and provides most of the information, except amplitude, needed to accomplish this. 

Following are descriptions of two experimental measurements on fabricated samples representa- 
tive of those commonly used in SQUID NDE. 
Case I: The first validation experiment used a 5 mA DC-current injected into a 75 mm x 150 mm 
x 0.03 mm copper clad circuit board containing a 15 mm x 0.03 mm slot cut with a scalpel (see 
Figure 5). Although this setup does not provide completely uniform current injection across the 
sample (transverse to the slot) due to the point source electrodes, the region around the centrally 
located slot should be relatively uniform. 
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75 X150X 0.03 mm Cu plate 

scan area 

Figure 5: Case I: Experimental setup for DC-current injection in copper plate with slot 

Figure 6 shows the contour map resulting from a 2-D scan over the sample with the lines AA', 
BB', and CC. Profiles along these lines on this map are compared to those calculated by the 
measurement model. The scaling factor between the measured signal response (a voltage) and the 
calculated magnetic flux was determined using these profiles. Magnetic field shape characteristics 
(matching of peaks and valleys) will reflect the accuracy of the measurement model since a difference 
between the model and experiment would show up as a mismatch of the profiles at either the edge 
or the crack locations. 

The measurement model is in very good agreement with experiment for all profiles. A slight 
mismatch at the right side of AA' can be seen and is most likely due to a small variation in liftoff 
during a scan (i.e. sample not level). 

Case II: The second validation measurement was similar to the first with a 5 mA DC-current 
injected into a 100 mm x 150 mm x 0.03 mm copper clad circuit board containing a 9 mm diameter 
hole with a 9 mm x 0.03 mm slot on one side of the hole (see Figure 7). However, the SQUID 
used for this measurement was a high-Tc system [16] which used a planar gradiometer (pickup and 
balance coils in same plane) instead of axially along z. The scans were taken in an unshielded 
environment. 

Figure 8 shows the contour map resulting from a 2-D scan over the sample. The quadrupolar 
shape results from the planar gradiometer acting as a spatial differentiater and, by taking the 
derivative of the dipole-shaped magnetic signal, results in a quadrupolar shape. Since the planar 
gradiometer was oriented parallel to the plate edges, the edge signal is approximately zero and 
therefore, only that part of the scan above the hole/slot was used in these comparisons. Profiles 
along lines on this map are compared to those calculated by the measurement model. 

Figure 8 shows the profile comparisons, after scaling, corresponding to the lines AA', BB', and 
CC on the contour map. The measurement model is in very good agreement with experiment for 
all profiles. Again, a difference between the model and experiment would show up as a mismatch of 
the profiles at the location of the hole/crack. 

10    Summary and Conclusions 

The problem formulation begins with a boundary-integral representation for Laplace's equation in 
the plane. The presence of a single, straight crack in the plane is represented by a special Green's 

111 



B'       C 

-40 -20      B   0  C       20 
 x(mm)  

40 

Experiment 

BIE Model 

Figure 6:  Case I: Magnetic field contour map and profiles comparing experiment with the BEM 
model 
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Figure 7: Case II: Experimental setup for DC-current injection in copper plate with hole/slot 
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Figure 8: Case II: Magnetic field contour map and profiles comparing experiment with the BEM 
model 

function corresponding to zero flux across the crack. The Green's function used provides a very 
effective BIE model for the zero-flux boundary condition as the crack then is a part of the integral 
equation kernels and is not a part of the modeled boundary. A boundary element implementation 
for the harmonic BIE uses quadratic data variation on piecewise linear boundary elements. The 
BEM model with the Green's function is validated for the antiplane shear crack problem for which 
exact solutions exist. 

The steady-state electromagnetic problem suitable for calculating the magnetic field for a cracked 
plate with current injection has been formulated in terms of the derived BIE. The gradient of the 
potential yields the electrical field vector. The electromagnetic field equations yield the magnetic 
field at arbitrary three-dimensional space points, using the law of Biot-Savart. The law of Biot-Savart 
result is given in terms of two boundary integrals of current flow tangent to the boundaries which 
must be evaluated for all boundary points, including the crack. The cracked plate is represented 
as a finite thickness plate with a two-dimensional field so that the BEM results can be used in the 
three-dimensional magnetic field computation. 

The magnetic field integrals on the boundary points are formulated as Gaussian quadratures 
for the quadratic BEM data. The crack surface requires a special integration algorithm due to 
the singular conditions at each crack tip. Isoparametric boundary element algorithms are used 
for the magnetic field boundary integrals. The crack tip element uses the quarter-point mapping 
developed for BEM traction models of fracture problems which contain the leading term in the 
singular behavior. The mapping is shown to contain the leading term exactly. 

The application problem is the magnetic field for the steady-state current flow through two- 
dimensional plate with a crack. The magnetic field is the normal component of the field, which is 
the component detected by an experimental SQUID magnetometer. Experimental data was obtained 
for two cracked plates. The first is a copper plate with an EDM slot representing a crack. The second 
is a copper plate with a circular hole and a single edge crack normal to the hole surface. 

The new BEM results for the magnetic field are used to simulate a SQUID scan over the plate, 
along three scan lines parallel and normal to the current flow field. The agreement between the 
BEM results and the experimental data is excellent. 
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APPENDIX B: 

C-PROGRAM 



/* PROGRAM: biescan.c */ 
/* Tony Ewing, Nov 96 */ 

/* Program to solve the magnetic forward problem using BIE, */ 
/* generating the simulated magnetic field data due to circular rivet 
hole */ 
/* with crack which would be detected by a single-coil magnetometer. */ 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 

#define pi 3.141592653589793 
#define Nh 200 
#define Nc 200 

main() 

{ 

/* scan */ 
char scan_in[20],hole_in[20],crack_in[20] ; 

int i,j,k,1,widsteps,lngsteps,njmp,cnum; 

double scnwid,trcewid,scnlng,scninc,xstart,ystart,offset,xinc,theta; 
double coilrad,coilrd2,area,loff,product,baseline, base; 
double lnginc,widinc,X,Y,Z,calarea, Rcen; 
double mu,cnst,rtd,Bmax,Bmin,Bpp; 

double intflx[200][200]; 

/* hole */ 
int nc,nr,sn,eseg,hseg; 

double dml,dm4,kay,kayprm,dell,del2,snphil,csphil,phil,bl,blp,b2; 
double dm21,dm22,sy,sx,snphi2,csphi2,phi2,s,scal,dm31,dm32, Bh, totflxhl; 
double Bhtot,shatnx,shatny,rhol,rholx,rholy,rldtsnx,rldtsny,Dl,rldtsn; 
double rho2,rho2x,rho2y,r2dtsnx,r2dtsny,philp,phi2p,betal,beta2; 
double 
shattx, shatty,rldtstx,rldtsty,rldtst,r2dtstx,r2dtsty,r2dtst,signl,sign2 

double a,b,c,d,e,f1,targl,targ2,xprint,yprint,xbegin,ybegin,phi,snphi; 
double rl,r2,Dlprm,h,sig,calib,totflxh2; 

double seg[Nh+l][3]; 
double Vth[Nh+l] [3] ; 
double flxh[200][200]; 
double flxt[200][200]; 

/* crack  */ 
int gs,snj,sgint,cseg,cnod; 

double nl,n2,n3,rxil,rxi2,rxi3,Vtxi,jl,j2,j3,rhonl, rhon2, rhon3, jxi,AC; 
double sndl,snd2,snd3,rhonlx,rhonly,rhon2x,rhon2y,rhon3x,rhon3y; 

double Vtxil,Vtxi2,Vtxi3,jxil,jxi2,jxi3,Lx,Ly,L,VtRl,VtR2,VtR3; 
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double Bc,Bctot,totflxcl,totflxc2,holrad,biesign; 

double node[Nc+l][3]; 
double Vtc[Nc+l]; 
double flxc[200] [200] ; 
double I5[6],xi5[6],w5[6]; 

/* print */ 
int ip,jp,print; 

/* math functions */ 
double cos(double),sin(double),acos(double),tan(double) ; 
double fabs(double),pow(double,double),sqrt(double); 
double log(double) ; 

FILE *fpin; 
FILE *fpinl; 
FILE *fpin2; 
FILE *fpout; 
FILE *fpoutl; 
FILE *fpout2; 

/* open scanning input file */ 

printf("Input scan input file name:  "); 
scanf("%s",scan_in); 

if((fpin=fopen(scan_in,"r"))==NULL) 
{ 
printf("cannot open file\n"); 
exit(1); 
} 

/* open BIE segments input file for hole */ 

fscanf(fpin,"%s",hole_in); 

if((fpinl=fopen(hole_in,"r"))==NULL) 
{ 
printf("cannot open file\n"); 
exit (1); 
} 

/* open BIE segments input file for crack */ 

fscanf(fpin,"%s",crack_in); 

if((fpin2=fopen(crack_in,"r"))==NULL) 
{ 
printf("cannot open file\n"); 
exit(l); 
} 

/* open output file */ 

if((fpout=fopen("scan.out","a"))==NULL) 
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printf("\nCannot open file\n\n"); 
exit (1) ; 
} 

if((fpoutl=fopen("scanl.out","w")}==NULL) 

{ 
printf("\nCannot open file\n\n"); 
exit (1) ; 
} 

if((fpout2=fopen("scan2.out","w"))==NULL) 

{ 
printf("\nCannot open file\n\n"); 
exit(l); 

/* read in boundary info, SQUID parameters and x-y scan geometry */ 

fscanf(fpin,"%lf",&holrad); 
fscanf(fpin,"%lf",&AC); 
fscanf (fpin, "%lf",'&sig) ; 
fscanf(fpin,"%lf",&h); 
fscanf{fpin,"%lf",&calib); 
fscanf(fpin,"%d",&eseg); 
fscanf(fpin,"%d",shseg); 
fscanf(fpin,"%d",&njmp); 
fscanf(fpin,"%d",&cnod); 
fscanf(fpin,"%d",&cseg); 
fscanf(fpin,"%d",&sgint); 
fscanf(fpin, "%lf",Scoilrad); 
fscanf(fpin, "%lf",&loff); 
fscanf(fpin, "%lf",&baseline); 
fscanf(fpin, "%lf",&scnwid); 
fscanf(fpin, "%lf",Sscnlng); 
fscanf(fpin, "%lf",slnginc); 
fscanf(fpin, "%lf",Swidinc); 
fscanf(fpin, "%lf",&offset); 

/* read in x,y-coordinates of boundary segment endpoints for hole */ 
/* njmp is the number of boundary jumps - e.g. 2 closed boundaries is 

*/ 
/* njmp=l */ 
for(nr=l;nr<=(eseg+hseg+njmp+1);nr++) 

{ 
for(nc=l;nc<=2;nc++) 

{ 
fscanf(fpinl,"%lf",&seg[nr][nc]); 

/* seg[nr][nc]=(seg[nr][nc])/100.;*/ 
} 

for(nc=l;nc<=2;nc++) 
{ 
fscanf(fpinl,"%lf",&Vth[nr][nc]); 
printf("Vth[%d][%d]= %f\n",nr,nc,Vth[nr][nc]); 
} 

} 
/* read in x,y-coordinates of nodes for crack (3 per crack element) */ 
/* nseg is the total number of segments (2 nodes per segment) */ 
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/* sgint is the number of segments per element - eg  3 nodes/2 
segments/ */ 
/* 1 element. */ 
printf("cnod= %d\n",cnod); 
for(nr=l;nr<=cnod;nr++) 

{ 
for(nc=l;nc<=2;nc++) 

{ 
fscanf(fpin2,"%lf",&node[nr][nc]); 
} 

fscanf(fpin2,"%lf",&Vtc[nr]); 
printf("Vtc[%d]= %f\n",nr,Vtc[nr]); 
} 

/* Define constants */ 

mu=pi*4.Oe-07; 
rtd=180./pi; 
cnst=mu/(4.0*pi) ; 
coilrd2=coilrad*coilrad; 
calarea=pi*coilrd2; 
widsteps=scnwid/widinc;  /* number of scan traces - y direction */ 
lngsteps=scnlng/lnginc;  /* number of steps along x-scan */ 

/*  write statements for ASCII output */ 
/*fprintf(fpout, "%i\n",lngsteps); 
fprintf(fpout, "%i\n",widsteps);*/ 
fprintf(fpoutl, "%i\n",lngsteps) ; 
fprintf(fpoutl, "%i\n",widsteps); 
fprintf(fpout2, "%i\n",lngsteps) ; 
fprintf(fpout2, "%i\n",widsteps); 

/ + * + ** + ** + ************ + *+  gTART SCAN **********************/ 

for(i=0;i<=widsteps;i++)  /* 'loop to step along y */ 
{ 
printf("loop %d of %d\n",i,widsteps); 
xstart=-scnlng/2.; 
ystart=-offset-(scnwid/2.)+i*(widinc); 
for(j=0;j<=lngsteps;j++)  /* loop to step along x */ 

{ 
xinc=xstart+j *lnginc; 
totflxhl=0.0; 
totflxcl=0.0; 
totflxh2=0.0; 
totflxc2=0.0; 
base=baseline; 
for(cnum=l;cnum<=2;cnum++) /* loop for gradiometer */ 

{ 
if(cnum==2) base=0.0; 
for(k=0;k<=6;k++) /* loop for coil integration - Roth */ 

{ 
theta=(pi/3.)*k; 
if(k==0) 

{ 
Rcen=0.0; 
area=0.25*calarea; 
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} 

else 
{ 
Rcen=0.81650*coilrad; 
area=0.125*calarea; 
} 
X=Rcen*cos(theta)+xinc; 
Y=Rcen*sin(theta)+ystart; 

/•■a-********************* HOLE BEGIN *************************/ 
/*     Calculate vectors between source and field points */ 

Bhtot=0.0; 
for(sn=l;sn<(eseg+hseg+njmp+1);sn++) 

{ 
if(sn==eseg+l) sn++; 
sy=seg[sn+l][2]-seg[sn][2]; 
sx=seg[sn+l][l]-seg[sn][1]; 
s=sqrt(pow(sx,2)+pow(sy,2)); 
shatnx=sy/s; 
shatny=-sx/s; 
shattx=sx/s; 
shatty=sy/s; 

/* If modeling rivot hole with crack, since node position from BIE is 
in */ 
/* crack coordinates, need to shift back to global coordinates by  */ 
/* AC (crack length) - only on X now - subtract holrad from rholx and 
rho2x*/ 

if(cnod==0) rholx=X-seg[sn][1]; 
else rholx=X-seg[sn][1]-holrad; /*lst error: subtract hole 

radius */ 
rholy=Y-seg[sn][2]; 
rhol=sqrt(pow(rholx,2)+pow(rholy,2)); 
rl=sqrt(pow(rhol,2)+pow((loff+base),2)); 
rldtsnx=rholx*shatnx; 
rldtsny=rholy*shatny; 
rldtstx=rholx*shattx; 
rldtsty=rholy*shatty; 
rldtst=rldtstx+rldtsty; 
rldtsn=rldtsnx+rldtsny; 

/*  Determine sign on angle using dot product with s-tangent */ 
if(rldtst==0.0) signl=-1.0; 
else signl=-(rldtst/fabs(rldtst)); 

Dl=fabs(rldtsn); 
Dlprm=sqrt(pow(Dl,2)+pow((loff+base),2)); 
if(cnod==0) rho2x=X-seg[sn+l][1]; 
else rho2x=X-seg[sn+l][1]-holrad; /* part 2 of 1st 
rho2y=Y-seg[sn+l][2]; 
rho2=sqrt(pow(rho2x,2)+pow(rho2y,2)); 
r2=sqrt(pow(rho2,2)+pow((loff+base),2)); 
r2dtsnx=rho2x*shatnx; 

error */ 

r^atsrix=xuo^x" siidunx; 
r2dtsny=rho2y*shatny; 
r2dtstx=rho2x*shattx; 
r2dtsty=rho2y*shatty; 
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r2dtst=r2dtstx+r2dtsty; 

if(r2dtst==0.0) sign2=-1.0; 
else sign2=-(r2dtst/fabs(r2dtst) 

phil=signl*acos(Dlprm/rl); 
phi2=sign2*acos(Dlprm/r2); 

/*  Determine linear constants from tangential derivatives */ 

b2=((Vth[sn][2])-(Vth[sn][l]))/s; 
bl=(Vth[sn][1])-b2*Dlprm*tan(phil); 
targl=tan((pi/4.}+(phil/2.)); 
targ2=tan((pi/4.)+(phi2/2.) ) ; 
Bh=(bl*log(targ2/targl))+(b2*(r2-rl)); 

Bhtot=Bh+Bhtot; 

}  /* end loop for hole bie segments */ 

if(cnum==l) 
{ 
totflxhl=Bhtot*area+totflxhl; 
} 

else 
{ 
totflxh2=Bhtot*area+totflxh2; 
} 

/************************ HOLE END -CRACK BEGIN 

/*  Set up Gauss points and corresponding weights arrays for 
integration */ 

xi5[0]=-sqrt((35.+2.*sqrt(70.))/63.); 
xi5[l]=-sqrt((35.-2.*sqrt(70.))/63.); 
xi5[2]=0.0; 
xi5[3]=-xi5[l]; 
xi5[4]=-xi5[0]; 
w5[0]=5103./(50.*(322.+13.*sqrt(70.))); 
w5[l]=5103./(50.*(322.-13.*sqrt(70.))); 
w5[2]=128./225.; 
w5[3]=w5[l]; 
w5[4]=w5[0]; 

/*  Calculate vectors between source and field points */ 
Bctot=0.0; 
snj=0; 
for(sn=0;sn<(cseg/2);sn++) /* 2nd error: divide by 2 */ 

{ 
if(sn%sgint==0) snj=snj+l; 
if(sn==0) snj=0; 

/*  5-pt gaussian quadrature integration loop */ 
for(gs=0;gs<=4;gs++) 
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{ 
nl=.5*xi5[gs]*(xi5[gs]-l.); 
n2=(l.-xi5[gs])*(l.+xi5[gs]); 
n3=.5*xi5[gs]*(xi5[gs]+l.); 

/*  Evaluate terms in integral */ 

rhonlx=X-(holrad+node[2*sn+l+snj][1]) 
rhon2x=X-(holrad+node[2*sn+2+snj][1]) 
rhon3x=X-(holrad+node[2*sn+3+snj][1]) 
rhonly=Y-node[2*sn+l+snj][2] 
rhon2y=Y-node[2*sn+2+snj][2] 
rhon3y=Y-node[2*sn+3+snj][2] 
rhonl=sqrt(pow(rhonlx,2.)+pow(rhonly,2.)) 
rhon2=sqrt(pow(rhon2x,2.)+pow(rhon2y,2.)) 
rhon3=sqrt(pow(rhon3x,2.)+pow(rhon3y,2.)) 

rxil=(l./(sqrt(pow((loff+base),2.)+pow(rhonl,2.)))) 
rxi2=(l./(sqrt(pow((loff+base),2.)+pow(rhon2,2.)))) 
rxi3=(l./(sqrt(pow((loff+base),2.)+pow(rhon3,2.)))) 

Vtxil=nl*Vtc[2*sn+l+snj]; 
Vtxi2=n2*Vtc[2*sn+2+snj]; 
Vtxi3=n3*Vtc[2*sn+3+snj]; 

/*  Determine sign change due to numerical integration direction */ 
/*  starting at crack tip nodes rather than bie integration being */ 
/*  positive direction with material always on left */ 

Lx=node[2*sn+3+snj][1]-node[2*sn+l+snj][1]; 
Ly=node[2*sn+3+snj][2]-node[2*sn+l+snj][2]; 
L=sqrt(pow(Lx,2)+pow(Ly,2)); 

if(node[2*sn+l+snj][2]>0.0) biesign=l.0; 
else biesign=-l.0; 

/*  Check to see if on a crack-tip element or regular element */ 
if(sn%sgint==0) 

{ 
VtR2=sqrt(AC-fabs(node[2*sn+2+snj][1])); 
VtR3=sqrt(AC-fabs(node[2*sn+3+snj][1])); 
jxi=biesign*sqrt(L); 
I5[gs]=(Vtxil*rxil+Vtxi2*rxi2*VtR2+Vtxi3*rxi3*VtR3)*jxi; 

} 
else 

{ 
I5[gs]=(Vtxil*rxil+Vtxi2*rxi2+Vtxi3*rxi3)*biesign*(L/2.); 

} 

} /* end gaussian quadrature loop */ 

Bc=w5[0]*I5[0]+w5[l]*I5[l]+w5[2]*I5[2]+w5[3]*I5[3]+w5[4]*I5[4]; 
/* if(ystart==0)   printf("Crack loop   [%d],   Bc=  %e\n",sn,Bc);*/ 

Bctot=Bc+Bctot; 

}     /*  end loop  for  crack bie  segments   */ 
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if(cnum==l) 
{ 
totflxcl=Bctot*area+totflxcl; 
} 

else 
{ 
totflxc2=Bctot*area+totflxc2; 
} 

} /* end loop for coil integration */ 
} /* end loop for gradiometer */ 

flxhfi][j]=cnst*h*sig*calib*(totflxh2-totflxhl); 
flxc[i][j]=cnst*h*sig*calib*(totflxc2-totflxcl); 
flxt[i][j]=flxh[i][j]+flxc[i][j]; 

} /* end loop for scan along x */ 

} /* end loop for increment along y */ 

/************************** END SCAN ********+********************/ 
/*     Set initial values within output range */ 

Bmax=flxt[l] [1] ; 
Bmin=flxt[l] [1]; 

/*  Loop to print output file */ 
for(ip=0;ip<=(widsteps);ip++) 

{ 
xbegin=-scnlng/2.; 
yprint=-offset-(scnwid/2.)+ip*(widinc); 
for(jp=0;jp<=lngsteps;jp++) 

{ 
/* Find max/min of scan */ 
if(flxt[ip] [jp]>Bmax) Bmax=flxt[ip] [jp] ; 
if(flxt[ip][jp]<Bmin) Bmin=flxt[ip][jp]; 

xprint=xbegin+jp*lnginc; 
/*        fprintf(fpout, "%f %f %e\n", xprint,yprint,flxh[ip][jp]);*/ 
/*       fprintf(fpoutl, "%f %f %e\n", 
xprint,yprint,intflx[ip][jp]);*/ 

fprintf(fpout2, "%f %f %e\n", xprint,yprint,flxt[ip][jp]); 
/*        fprintf(fpout2, "%e\n",flxt[ip][jp]);+/ 

} 
} 

Bpp=Bmax-Bmin; 
fprintf(fpout, "%e\n", Bpp); 

fclose(fpin); 
fclose(fpinl); 
fclose(fpin2); 
fclose(fpout); 
fclose(fpoutl); 
fclose(fpout2); 
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}   /*  end of main()   */ 
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APPENDIX C: 

FLUX/VOLTAGE CALIBRATION OF SQUID MAGNETOMETERS 



Flux/Voltage Calibration of SQUID Magnetometers 

The SQUID magnetometer outputs a voltage, V, proportional to the magnetic flux, 

0, through the pickup coil. Many SQUID systems use gradiometers consisting of a 

pickup coil connected serially to a counter-wound balance coil (Figure C.l). This is done 

to reject noise from distant field sources (uniform) since the flux through each coil would 

be approximately the same resulting in zero net flux. For closer sources, such as 

scanning a sample, the flux in stronger in the pickup coil than in the compensation coil 

resulting in a net flux and hence, an output voltage. 

baseline 

balance coil 

pick-up coil 

Figure C. 1 Gradiometer with pick-up coil and counter-wound balance coil 

To use SQUIDs as accurate quantitative measuring tools, correct instrument 

calibration is necessary to determine the absolute magnetic field being measured. One 

approach is to scan the SQUID over a standard source for which the magnetic field 

spatial distribution can be determined analytically so that comparisons can be made. A 

commonly used source is a current carrying wire (see Figure C.2). From Ampere's Law, 

it can be determined that the vertical component of magnetic field, Bz, in the x-direction a 

distance z above a current (i) carrying wire is given by 
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Bz{x) = Mol 
2n 

x 
\x2+z\ 

(C.l) 

baseline 
;**"•} balance coil 

*"£ pick-up coil 

x /, 

> X 

Figure C.2 Calibration using a current carrying wire 

Differentiating this relation gives the location of the maximum and minimum peaks of Bz 

resulting in relationship for the peak-to-peak separation (see Figure C.3) 

2 2 
Z   —X dB: =  

dx ~(x2 + z2} 

:.   Ax = 2z. 

0   =>   x = ±z 
(C.2) 

Figure C.3 Dipolar signal showing peak-to-peak separation and amplitude 

So, the peak-to-peak field value, BPPi is determined by the difference of Bz at x = ±z 
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2n \2z) 

BXx = -z)=EoL(zl 
2n \2z) 

(C.3) 

This can be used to estimate the vertical location (z) of the pickup coil above the wire 

through a measurement ofBpp. This is only an approximation since it assumes a single 

point detector above an infinite wire. To model the output from a gradiometer above a 

finite wire, the magnetic field must be integrated over the areas of the pickup and balance 

coils. 

Integration schemes can be found in [21] and used to integrate the magnetic field 

from a finite length wire, length 2/ carrying current / 

y-l 
: + ■ y+i (C.4) 

>LV(v-/)2+(*2+z2)  V(y+tf+(*2+*2)_ 

It is usually difficult to know z accurately since the pickup coils are located inside 

the dewar. To address the uncertainties in the system variables, a procedure, Calibration 

Requiring Approximate Parameters [22], has been developed to determine the factor 

scaling the output voltage to magnetic flux. The procedure uses optimization [23] over 

liftoff, coil tilt, gradiometer baseline, coil radius, and the calibration factor to "match" the 

experimentally measured voltage map to the magnetic flux map calculated using Eq. 

(C.4). The resulting voltage-to-flux calibration factor is independent of magnetic field 

source and liftoff distance and therefore, can be used for all measurements using that 

system. 
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So far in this discussion, the calibration factor has scaled voltage to net magnetic 

flux (0- units of weber). It is common practice to state this calibration factor as a 

voltage to magnetic field (B - units of tesla) number. This is done by converting the net 

flux back to an approximate magnetic field value by dividing by the area of the pickup 

coil. This however introduces error into the resulting value since this conversion must 

assume a uniform magnetic field across the coil area and ignores the balance coil 

contribution. This is useful for those interested in approximate magnetic field values that 

are not dependent on the system's coil geometry, as flux is. 

single coil - uniform B gradiometer - nonuniform B 

<& = JB-dA AO=     JB.-dA, -     JB2-dA2 
co" pickup coil balance coil 

<J> 
=>B = — =>£ = ? 

A 

These issues affect only quantitative amplitude values since the result is an 

optimized calibration factor used to scale the theoretical result to the experimental 

measurement. The shape of the magnetic maps is unchanged by this process and does not 

affect qualitative analysis of the images. 
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APPENDIX D: 

LIST OF PUBLICATIONS/PRESENTATIONS 



"Special Green's Function Formulation of Laplace's Equation for EM Application", T.A. 
Cruse, A.P. Ewing, manuscript in preparation. 

"An Optimization-based Procedure for Flux/Voltage Calibration of Axial SQUID 
Gradiometers", A.P. Ewing, C.Hall Barbosa, A.C. Bruno, J.P. Wikswo, Jr., manuscript in 
preparation. 

"Boundary Integral Equation Measurement Model for the ECI Method of NDE", C.Hall 
Barbosa, A.P. Ewing, T.A. Cruse, A.C. Bruno, J.P. Wikswo, Jr., Compumag '97, Nov. 2- 
6,1997. 

"A SQUID NDE Measurement Model using BEM", A.P. Ewing, T.A. Cruse, J.P. 
Wikswo, Jr., 24th Annual Review of Progress in QNDE, 1997 (in print). 

"Probability of Detection (POD) in SQUID NDE", A.P. Ewing, T.A. Cruse, J.P. 
Wikswo, Jr., The First Joint DoD/FAA/NASA Conference on Aging Aircraft, July 8-10, 
1997. 

"Boundary Integral Equations for Modeling Arbitrary Flaw Geometries in ECI NDE", 
A.P. Ewing, CHall Barbosa, T.A. Cruse, A.C. Bruno, J.P. Wikswo, Jr. 24th Annual 
Review of Progress in QNDE, 1997 (in print). 

"Measurements of Surface-Breaking Flaws in Steel Pipes Using a SQUID Susceptometer 
in an Unshielded Environment", C.Hall Barbosa, A.C. Bruno, G.S. Kuhner, J.P. Wikswo, 
Jr., Y.P. Ma, A.P. Ewing, 24th Annual Review of Progress in QNDE, 1997 (in print). 

"Measurements of Surface-Breaking Flaws in Ferromagnetic Plates by Means of an 
Imaging SQUID Susceptometer", A.C. Bruno, A.P. Ewing, J.P. Wikswo, Jr., 1994 
Applied Superconductivity Conference. 
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